The treatment of critically ill patients remains an evolving and controversial issue. Mechanical circulatory support through a percutaneous approach for the management of cardiogenic shock has taken place in recent years. The combined use of IABP and the Impella 2.5 device may have a role to play for this group of patients. A simulation approach may help with a quantitative assessment of the achievable degree of assistance. In this paper, we analyse the interaction between the Impella 2.5 pump applied as the LVAD and IABP using the numerical simulator of the cardiovascular system developed in our laboratory. Starting with pathological conditions reproduced using research data, the simulations were performed by setting different rotational speeds for the LVAD and driving the IABP in full mode (1:1) or partial mode (1:2, 1:3 and 1:4). The effects induced by drug administration during the assistance were also simulated. The haemodynamic parameters under investigation were aa follows: mean aortic pressure, systolic and diastolic aortic pressure, mean pulmonary arterial pressure, mean left and right atrial pressure, cardiac output, cardiac index, left and right ventricular end-systolic volume, left ventricular end-diastolic volume and mean coronary blood flow. The energetic variables considered in this study were as follows: left and right ventricular external work and left and right atrial pressure-volume area. The outcome of our simulations shows that the combined use of IABP and Impella 2.5 achieves adequate support in the acute phase of cardiogenic shock compared to each standalone device. This would allow further stabilisation and transfer to a transplant centre should the escalation of treatment be required.
Keywords: lumped-parameter model, CARDIOSIM©, IABP, Impella, cardiovascular system, heart failure, clinician, numerical simulator, e-learning