International Perfusion Association

Social:

Meta-Analysis of the Performance of AI-Driven ECG Interpretation in the Diagnosis of Valvular Heart Diseases

Valvular heart diseases (VHDs) significantly impact morbidity and mortality rates worldwide. Early diagnosis improves patient outcomes. Artificial intelligence (AI) applied to electrocardiogram (ECG) interpretation presents a promising approach for early VHD detection. We conducted a meta-analysis on the efficacy of AI models in this context. We reviewed databases including PubMed, MEDLINE, Embase, Scopus, and Cochrane until August 20, 2023, focusing on AI for ECG-based VHD detection. The outcomes included pooled accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value. The pooled proportions were derived using a random-effects model with 95% confidence intervals (CIs). Study heterogeneity was evaluated with the I-squared statistic. Our analysis included 10 studies, involving ECG data from 713,537 patients. The AI algorithms mainly screened for aortic stenosis (n = 6), mitral regurgitation (n = 4), aortic regurgitation (n = 3), mitral stenosis (n = 1), mitral valve prolapse (n = 2), and tricuspid regurgitation (n = 1). A total of 9 studies used convolution neural network models, whereas 1 study combined the strengths of support vector machine logistic regression and multilayer perceptron for ECG interpretation. The collective AI models demonstrated a pooled accuracy of 81% (95% CI 73 to 89, I² = 92%), sensitivity was 83% (95% CI 77 to 88, I² = 86%), specificity was 72% (95% CI 68 to 75, I²= 52%), PPV was 13% (95% CI 7 to 19, I² = 90%), and negative predictive value was 99% (95% CI 97 to 99, I² = 50%). The subgroup analyses for aortic stenosis and mitral regurgitation detection yielded analogous outcomes. In conclusion, AI-driven ECG offers high accuracy in VHD screening. However, its low PPV indicates the need for a combined approach with clinical judgment, especially in primary care settings.

Keywords: aortic stenosis; artificial intelligence; electrocardiograms; mitral regurgitation; valvular heart disease.

Latest Posts