The minimally invasive extracorporeal circulation (MiECC) system was developed to minimize the contact of blood with air and foreign surfaces during conventional cardiopulmonary bypass (CPB). It is also aimed to reduce the inflammatory response by further increasing the biocompatibility of the components that make up the MiECC circuits. The Minithoracotomy (MTH) approach for mitral valve disease remains associated with prolonged operative times, but it is beneficial in terms of reduced postoperative complications (renal failure, atrial fibrillation, blood transfusion, wound infection), length of stay in intensive care unit (ICU) and in hospitalization, with finally a reduction in global cost. Combining the use of the MiECC technique with minimally invasive mitral valve surgery (MIMVS) could open up new research scenarios. Although considerable progress has been made in the standardization of the surgical technique, limitations remain to be filled in the setting of Endo-cavitary aspiration for the association of MiECC with MIMVS. In this paper we introduce invention refers to a device and an air-closed endocavitary aspiration system for cardiac chamber surgery, as well as a method aimed at eliminating gaseous micro-embolic activity, hemolysis and CO2aspiration and alteration of carbon dioxide production (VCO2) the parameters for goal directed perfusion. The system allows the surgery of the cardiac chambers to be associated with a minimally invasive extra-corporeal circulation circuit.
Keywords: Endo-cavitary suction device; Minimal Invasive Mitral valve surgery; Minimally invasive extracorporeal circulation; Minithoracotomy.