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Background: The incidence, mortality, and readmission rates for acute heart failure (AHF) are high, and the in-hospital mortality for AHF

patients in the intensive care unit (ICU) is higher. However, there is currently no method to accurately predict the mortality of AHF patients.

Methods: The Medical Information Mart for Intensive CareⅣ (MIMIC-Ⅳ) database was used to perform a retrospective study. Patients meeting

the inclusion criteria were identified from the MIMIC-Ⅳ database and randomly divided into a training set (n = 3,580, 70%) and a validation set

(n = 1,534, 30%). The variates collected include demographic data, vital signs, comorbidities, laboratory test results, and treatment information

within 24 hours of ICU admission. By using the least absolute shrinkage and selection operator (LASSO) regression model in the training set,

variates that affect the in-hospital mortality of AHF patients were screened. Subsequently, in the training set, five common machine learning

(ML) algorithms were applied to construct models using variates selected by LASSO to predict the in-hospital mortality of AHF patients. The

predictive ability of the models was evaluated for sensitivity, specificity, accuracy, the area under the curve of receiver operating characteristics,

and clinical net benefit in the validation set. To obtain a model with the best predictive ability, the predictive ability of common scoring systems

was compared with the best ML model.

Results: Among the 5,114 patients, in-hospital mortality was 12.5%. Comparing the area under the curve, the XGBoost model had the best pre-

dictive ability among all ML models, and the XGBoost model was chosen as the final model for its higher net benefit. Its predictive ability was

superior to common scoring systems.

Conclusions: The XGBoost model can effectively predict the in-hospital mortality of AHF patients admitted to the ICU, which may assist clini-

cians in precise management and early intervention for patients with AHF to reduce mortality.

� 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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ACUTE HEART FAILURE (AHF) is a clinical syndrome

characterized by dyspnea or exertional limitation due to
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impairment of ventricular filling or ejection of blood or both.1

In addition, heart failure (HF) has high incidence, mortality,

and readmission rates, affecting more than 64 million people

worldwide.2,3 Research showed that between 2009 to 2012

and 2013 to 2016, the prevalence of HF among American

adults increased from 5.7 million to 6.2 million, and the annual

incidence rate of HF among adults over 55 years old in the
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United States increased from 870,000 from 2005 to 2011 to

1 million in 2014.4,5 It is expected that by 2030, the estimated

prevalence of HF will increase by 24%, reaching approxi-

mately 8.5 million.6,7 In the United States, approximately 10%

to 51% of HF inpatients are admitted to the intensive care unit

(ICU), and compared with patients in the general medical

ward, patients admitted to the ICU have a significantly higher

adjusted in-hospital mortality rate.8,9,10 It was reported that the

in-hospital mortality rate for patients treated in the ICU was

10.6% compared with 4.0% for all HF patients.11

Machine learning (ML) belongs to the category of artificial

intelligence, and the strength of ML algorithms lies in their

ability to automatically learn patterns from large datasets for

predictive analysis, allowing users to collect knowledge from

past data and apply it to future predictions. Compared with tra-

ditional prediction models based on linear parameter models,

ML is not only applicable in highly complex and nonlinear

environments, but also suitable for processing big data.12 ML

has already been applied in detection and diagnosis, treatment,

and outcome prediction and prediction evaluation,13 for exam-

ple, in the diagnosis of diabetic retinopathy from retinal fundus

photographs and breast cancer.14,15

Although previous studies have established predictive

models for mortality in AHF patients, the area under the

curve (AUC) of receiver operating characteristics (ROC) of

the best models constructed by these studies were 0.764 and

0.720, respectively.16,17 Applying these models for predic-

tion cannot obtain accurate results, and the models still need

to be optimized. This study was designed to develop and

validate multiple ML models based on clinical features,

to find the model with the best predictive performance for

predicting in-hospital mortality in AHF patients admitted to

the ICU.
Materials and Methods

Study Design and Data Source

A retrospective analysis was conducted using all relevant

data extracted from the Medical Information Mart for Inten-

sive Care Ⅳ (MIMIC-IV) database,18 which consists of com-

prehensive and high-quality data on patients admitted to the

ICU at the Beth Israel Deaconess Medical Center between

2008 and 2019. To access the database, one author (S.Y.W.)

passed the National Institutes of Health Protecting Human

Research Participants web-based training course and obtained

approval to extract data from the MIMIC-IV for research pur-

poses (Certification Number: 50778029).
Study Patients

When patients were diagnosed with AHF using the ICD-9

codes 42821, 42831, 42841, 42823, 42833, and 42843, or

ICD-10 codes I5021, I5031, I5041, I50811, I5023, I5033,

I5041, I5043 and I50813, patient eligibility was considered.

Patients who were �18 years old at the time of ICU admission

were included in the study; Only the first ICU admission was
included for patients with multiple ICU admissions. Patients

without an ICU record were excluded from the study. The flow

chart in Figure 1 showed the selection of patients. Finally,

5,114 adult patients were included in this study.

Data Extraction and Processing

In the MIMIC-IV cohort, based on previous research,16,19

clinical relevance, and general availability, clinical and labora-

tory variates were extracted within the first day of ICU admis-

sion and included: demographic characteristics, vital signs,

comorbidities and laboratory variates, treatment information,

and scoring systems. A total of 143 variates were extracted,

and to avoid bias caused by a large number of missing values,

variates with more than 30% missing value were directly

excluded20 (Missing value details in Supplementary Table 1.)

For variates with missing values equaling less than 30%, mul-

tiple imputation was used to fill data imputation by R software

(“mice” package). Ultimately, 54 variates were obtained for

further analysis. In-hospital mortality of the AHF patients was

also extracted as an outcome.

Missing Data

Variates with missing data totaling >30% were directly

excluded. Variates with missing data totaling <30%were proc-

essed by multiple imputation using the “mice” package in R

software. Multiple imputation is a two-stage approach. Miss-

ing values were input a number of times using a statistical

model based on the available data, producing several datasets

from which parameters could be estimated. These parameters

were combined to provide an effective estimate of the

parameters.21,22

ML Model Building and Assessment

The dataset was divided into a training set and a validation

set, and models were constructed in the training set. Consider-

ing there were still many variates in the training set, to effec-

tively prevent overfitting, variates were further selected by

using the least absolute shrinkage selection operator (LASSO)

regression. LASSO is a regression-based methodology, which

was conducted via a continuous shrinking operation and mini-

mizing regression coefficients, to reduce the likelihood of

overfitting. LASSO has the unique feature of penalizing the

absolute value of a regression coefficient. The greater the

penalization, the greater the shrinkage of coefficients, with

some reaching 0, thus automatically removing unnecessary

and/or noninfluential covariates.21,23 Finally, the variates

selected through LASSO were used to construct the models in

the training set.

In this study, five common algorithms, including logistic

regression (LR), k-nearest neighbor (KNN), eXtreme gradient

boosting (XGBoost), decision tree (DT), and random forest

(RF), were applied to construct models for predicting in-hospi-

tal mortality of AHF patients in the ICU. The training set was

used for model establishment and adjustment (by a grid
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search), while the validation set was used for model evalua-

tion. The model with the best predictive performance was

determined by comparing the AUC values of these models in

the validation set and the clinical net benefit of these models

through decision curve analysis (DCA).

Statistical Analysis

According to the normality of the distribution, continuous

variates are described as mean § standard deviation (SD) or

median and interquartile range (IQR), which were compared

by Student’s t-test or the Mann�Whitney U test. The categori-

cal variates are expressed as a percentage of the total, and

were compared by Pearson’s chi-squared test or Fisher’s exact

test.

The LASSO penalization method was used to further screen the

predictive variates. By conducting tenfold cross-validation on the

established LASSO model, a key parameter (lambda) was deter-

mined, and variates with predictive significance were screened out.

After that, the patients were randomly divided into two

groups, of which 70% were used as the training set and the

remaining 30% as the validation set. Five common ML meth-

ods were applied to develop the models in the training set and

validate them in the validation set. The performance of the

models was assessed by comparing the AUC and DCA in the

validation set. Finally, the model with the best predictive abil-

ity was obtained.

Sequential Organ Failure Assessment, Logistic Organ Dys-

function System, and Simplified Acute Physiology Score II

scores are commonly used tools to evaluate the severity and

prognosis of diseases in ICU patients, and their predictive abil-

ity was compared with the best ML model.
Fig 1. Flowchart of patient selection.

DT, decision tree; ICD-9/10, 9/10th revision of the International Classification

regression; MIMIC-Ⅳ, Medical Information Mart for Intensive CareⅣ; RF, random
All analyses were performed using the statistical software

packages R version 4.2.2 (http://www.R-project.org, The R

Foundation). p-Values < 0.05 (two-sided test) were considered

statistically significant.

Results

Baseline Characteristics

Figure 1 shows a flow chart describing the procedure for

subject selection. As shown in Figure 1, 5,114 AHF patients

were included. Among the included patients, 637 died (12.5%)

and 4,477 survived during in-hospital. Table 1 summarized the

comparison of baseline characteristics, vital signs, and labora-

tory parameters between deaths and survivors during in-hospi-

tal. There were significant differences between the death group

and the survival group, with the death group having older age,

lower urine output, higher creatinine and blood urea nitrogen

(BUN) values, faster heart rate (HR), lower blood pressure,

faster respiratory rate (RR), lower blood oxygen saturation,

and a higher proportion of vasopressor drug use. At the same

time, all patients were also randomly divided into a training

set (70%, 3,580) and a validation set (30%, 1,534) for subse-

quent model construction and validation. Between the two

datasets, except for the sbp_max, mbp_max, and the propor-

tion of patient with chronic obstructive pulmonary disease,

there were no significant differences in other indicators.

Features Selected in Models

The LASSO regularization process screened 18 potential

predictive factors based on 3,580 patients in the training set
of Diseases; ICU, intensive care unit; KNN, k-nearest neighbor; LR, logistic

forest; XGBoost, eXtreme gradient boosting.
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Table 1

Characteristics of Participants

Total (n = 5,114) Alive (n = 4,477) Died (n = 637) p-Value Training set

(n = 3,580)

Validation set

(n = 1,534)

p-Value

Age, mean (SD) 73.17 (13.82) 72.59 (13.98) 77.24 (11.89) <0.001 73.04 (13.90) 73.45 (13.64) 0.34

Male, mean (SD) 0.54 (0.50) 0.54 (0.50) 0.56 (0.50) 0.38 0.54 (0.50) 0.54 (0.50) 0.695

Platelets_min, mean (SD) 197.64 (98.70) 198.91 (96.58) 188.69 (112.19) 0.014 198.39 (99.74) 195.88 (96.26) 0.405

Platelets_max, mean (SD) 233.85 (109.55) 234.52 (106.75) 229.15 (127.49) 0.247 234.27 (110.78) 232.88 (106.67) 0.678

Wbc_min, mean (SD) 10.87 (6.62) 10.56 (5.99) 13.11 (9.70) <0.001 10.84 (6.44) 10.94 (7.03) 0.622

Wbc_max, mean (SD) 14.57 (9.56) 14.20 (8.87) 17.19 (13.18) <0.001 14.51 (9.09) 14.71 (10.58) 0.48

Aniongap_min, mean (SD) 13.63 (3.48) 13.40 (3.25) 15.26 (4.43) <0.001 13.66 (3.46) 13.55 (3.50) 0.272

Aniongap_max, mean (SD) 17.06 (4.58) 16.71 (4.25) 19.45 (5.90) <0.001 17.12 (4.68) 16.91 (4.34) 0.146

BUN_min, mean (SD) 31.46 (21.90) 29.96 (20.57) 42.00 (27.37) <0.001 31.59 (22.27) 31.16 (21.02) 0.521

BUN_max, mean (SD) 36.44 (24.20) 34.75 (22.87) 48.33 (29.41) <0.001 36.54 (24.31) 36.20 (23.95) 0.644

Creatinine_min, mean (SD) 1.52 (1.28) 1.48 (1.27) 1.83 (1.33) <0.001 1.53 (1.34) 1.50 (1.13) 0.368

Creatinine_max, mean (SD) 1.80 (1.52) 1.74 (1.50) 2.20 (1.58) <0.001 1.81 (1.57) 1.78 (1.39) 0.562

INR_min, mean (SD) 1.50 (0.78) 1.46 (0.76) 1.74 (0.92) <0.001 1.50 (0.80) 1.48 (0.75) 0.291

INR_max, mean (SD) 1.79 (1.39) 1.73 (1.31) 2.27 (1.83) <0.001 1.80 (1.40) 1.78 (1.39) 0.611

PT_min, mean (SD) 16.29 (7.91) 15.96 (7.67) 18.65 (9.09) <0.001 16.38 (8.06) 16.10 (7.57) 0.243

PT_max, mean (SD) 19.35 (13.81) 18.67 (12.84) 24.15 (18.59) <0.001 19.42 (13.92) 19.17 (13.55) 0.548

PTT_min, mean (SD) 34.67 (15.77) 34.07 (15.25) 38.92 (18.54) <0.001 34.79 (15.86) 34.38 (15.57) 0.391

PTT_max, mean (SD) 54.49 (38.22) 53.07 (37.24) 64.50 (43.26) <0.001 55.16 (38.85) 52.94 (36.67) 0.057

Urine output, mean (SD) 1,900.86 (1,399.54) 1,991.61 (1,393.81) 1,263.05 (1,268.50) <0.001 1,908.21 (1,414.12) 1,883.70 (1,365.21) 0.566

Heart rate_min, mean (SD) 71.91 (15.98) 71.73 (15.47) 73.19 (19.20) 0.032 72.00 (15.95) 71.71 (16.08) 0.552

Heart rate_max, mean (SD) 104.70 (22.36) 104.06 (22.10) 109.14 (23.65) <0.001 104.86 (22.34) 104.33 (22.39) 0.439

Heart rate_mean, mean (SD) 86.26 (16.92) 85.74 (16.60) 89.90 (18.67) <0.001 86.34 (16.90) 86.07 (16.97) 0.597

Sbp_min, mean, SD) 89.48 (16.94) 90.57 (16.41) 81.81 (18.58) <0.001 89.26 (16.95) 89.99 (16.93) 0.157

Sbp_max, mean (SD) 144.68 (24.16) 145.36 (23.82) 139.90 (25.96) <0.001 144.23 (23.54) 145.73 (25.52) 0.042

Sbp_mean, mean (SD) 115.43 (16.44) 116.36 (16.27) 108.87 (16.12) <0.001 115.25 (16.40) 115.86 (16.53) 0.22

Dbp_min, mean (SD) 44.63 (11.46) 45.22 (11.26) 40.50 (12.02) <0.001 44.65 (11.54) 44.58 (11.29) 0.84

Dbp_max, mean (SD) 88.17 (21.05) 88.32 (20.90) 87.09 (22.07) 0.167 87.86 (20.24) 88.88 (22.84) 0.112

Dbp_mean, mean (SD) 61.85 (11.45) 62.21 (11.48) 59.36 (10.94) <0.001 61.90 (11.41) 61.74 (11.53) 0.639

Mbp_min, mean (SD) 57.00 (13.26) 57.76 (12.83) 51.63 (14.94) <0.001 56.88 (13.47) 57.28 (12.76) 0.315

Mbp_max, mean (SD) 104.77 (27.21) 104.75 (26.77) 104.90 (30.15) 0.895 104.25 (26.29) 105.99 (29.23) 0.036

Mbp_mean, mean (SD) 76.61 (10.66) 77.07 (10.60) 73.40 (10.52) <0.001 76.59 (10.60) 76.64 (10.79) 0.88

RR_min, mean (SD) 13.30 (3.70) 13.25 (3.62) 13.63 (4.23) 0.017 13.30 (3.73) 13.28 (3.64) 0.867

RR_max, mean (SD) 29.49 (6.45) 29.30 (6.35) 30.77 (6.95) <0.001 29.50 (6.44) 29.46 (6.47) 0.856

Respiratory rate_mean, mean (SD) 20.53 (3.85) 20.38 (3.74) 21.58 (4.38) <0.001 20.55 (3.84) 20.50 (3.87) 0.693

Temperature_ mean, mean (SD) 36.77 (0.51) 36.78 (0.49) 36.73 (0.66) 0.044 36.78 (0.52) 36.75 (0.50) 0.125

SpO2_min, mean (SD) 90.41 (6.37) 90.87 (5.32) 87.21 (10.71) <0.001 90.44 (6.41) 90.36 (6.28) 0.686

SpO2_max, mean (SD) 99.33 (1.36) 99.34 (1.17) 99.25 (2.28) 0.109 99.35 (1.31) 99.30 (1.45) 0.321

SpO2_mean, mean (SD) 96.33 (2.32) 96.41 (2.03) 95.76 (3.73) <0.001 96.34 (2.31) 96.29 (2.34) 0.475

Glucose_mean, mean (SD) 360.92 (8153.17) 296.26 (7042.84) 815.39 (13604.70) 0.133 358.55 (7997.25) 366.47 (8508.61) 0.975

Prior HF (%) 1931 (37.8) 1707 (38.1) 224 (35.2) 0.162 1337 (37.3) 594 (38.7) 0.369

COPD (%) 279 (5.5) 251 (5.6) 28 (4.4) 0.244 180 (5.0) 99 (6.5) 0.047

CHD (%) 1312 (25.7) 1178 (26.3) 134 (21.0) 0.005 916 (25.6) 396 (25.8) 0.892

DM (%) 650 (12.7) 581 (13.0) 69 (10.8) 0.145 446 (12.5) 204 (13.3) 0.435

HBP (%) 1546 (30.2) 1380 (30.8) 166 (26.1) 0.016 1076 (30.1) 470 (30.6) 0.702

MI (%) 1563 (30.6) 1332 (29.8) 231 (36.3) 0.001 1117 (31.2) 446 (29.1) 0.139

Dobutamine (%) 315 (6.2) 203 (4.5) 112 (17.6) <0.001 222 (6.2) 93 (6.1) 0.9

Dopamine (%) 341 (6.7) 238 (5.3) 103 (16.2) <0.001 242 (6.8) 99 (6.5) 0.733

Epinephrine (%) 528 (10.3) 428 (9.6) 100 (15.7) <0.001 371 (10.4) 157 (10.2) 0.93

Norepinephrine (%) 1397 (27.3) 1014 (22.6) 383 (60.1) <0.001 973 (27.2) 424 (27.6) 0.76

Phenylephrine (%) 997 (19.5) 812 (18.1) 185 (29.0) <0.001 694 (19.4) 303 (19.8) 0.791

Lods, mean (SD) 5.54 (3.29) 5.09 (2.96) 8.73 (3.70) <0.001 5.54 (3.29) 5.55 (3.31) 0.887

SAPSII, mean (SD) 39.62 (13.14) 37.95 (11.99) 51.33 (14.79) <0.001 39.61 (13.14) 39.65 (13.15) 0.918

SOFA, mean (SD) 5.09 (3.32) 4.76 (3.11) 7.35 (3.82) <0.001 5.07 (3.32) 5.14 (3.31) 0.462

In_hospital mortality (%) 637 (12.5) 0 (0.0) 637 (100.0) <0.001 446 (12.5) 191 (12.5) 1

Data are presented as %, mean § standard deviation, or median (interquartile range).

Abbreviations: BUN, blood urea nitrogen; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; Dbp, diastolic blood pressure, DM,

diabetes mellitus; HBP, hypertension; HF, heart failure; INR, international normalized ratio; LODS, Logistic Organ Dysfunction System; Mbp, mean blood

pressure; MI, myocardial infarction; PT, prothrombin time; PTT, partial thromboplastin time; RR, respiratory rate; SAPSII, Simplified Acute Physiology Score II;

Sbp, systolic blood pressure; SOFA, Sequential Organ Failure Assessment; SpO2, saturation pulse oxygen; Wbc, white blood cell.
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Fig 2. Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Tuning parameter (l) selection in
the LASSO model used tenfold cross-validation via minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted versus log(l). Dotted
vertical lines were drawn at the optimal values by using the minimum criteria and the one SE of the minimum criteria (the 1-SE criteria). l value of 0.011845 was

chosen (1-SE criteria) according to tenfold cross-validation. (B) LASSO coefficient profiles of the 54 features. A coefficient profile plot was produced against the

log(l) sequence. The vertical line was drawn at the value selected using tenfold cross-validation, where optimal resulted in 18 features with nonzero coefficients.
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(Fig 2A, B). Figure 2B shows the LASSO-selected predictors

(shrinkage parameter l = 0.011845).

Development and Comparison of ML Models

Within the first 24 hours of admission to the ICU, after

excluding variates with missing values >30%, a total of 54

clinical features were collected. Multiple imputation was used

to fill in missing data. These results are shown in Table 1.

LASSO regression was used to further screen for characteristic

variates of in-hospital mortality in AHF patients. Finally, 18

variates were selected for model construction, including: age,

WBC_min, Aniongap_min, Aniongap_max, BUN_min,

INR_min, INR_max, PTT_min, Urine output, HR_mean,

SBP_mean, DBP_min, RR_mean, SpO2_min, dobutamine,

dopamine, norepinephrine, phenylephrine. We selected five

ML methods (including XGBoost, KNN, RF, DT, and LR)

based on the training set to construct five ML models to predict

the in-hospital mortality risk of AHF patients (Fig 3A).
Fig 3. Receiver operator characteristic (ROC) curves for the machine learning (M

curves for five ML models predicting in-hospital mortality in the training set (A) an

LR, logistic regression; RF, random forest; XGBoost, eXtreme gradient boosting.
The performance of the models was evaluated using the val-

idation set. Figure 3B and Table 2 describe the performance of

these prediction models, indicating that, compared with other

ML models, the XGBoost model is relatively better than the

other four models (AUC: XGBoost, 0.82; DT, 0.61; RF, 0.81;

LR, 0.81; KNN, 0.76). The DCA curve (Fig 5), also indicated

that the XGBoost model performed better. Therefore, in this

study, the XGBoost model was chosen as the final model.

Meanwhile, the XGBoost model was also compared with com-

mon scoring systems for disease severity and prognosis in the

ICU, such as the SOFA, LODS, and SAPSII. The results are

shown in Figure 4A, B, and Table 3. The results indicated that

XGBoost had better predictive ability than common scoring

systems (AUC: XGBoost, 0.82; LODS, 0.78; SAPSⅡ, 0.75;
SOFA, 0.70). Calibration curves were also plotted for each

model in the validation set. Calibration curves depict the cali-

bration of the model in terms of the agreement between the

predicted risk of in-hospital mortality and observed in-hospital

mortality. The closer the dashed line is to the solid line, the
L) models predict in-hospital mortality (training set and validation set). ROC

d validation set (B), respectively. DT, decision tree; KNN, k-nearest neighbor;



Table 2

Predictive Performances of the Five Machine Learning Models for Predicting In-hospital Mortality

Model AUC 95% CI Accuracy Sensitivity Precision F1 Score Specificity

XGB 0.82 0.78-0.85 0.90 0.99 0.90 0.94 0.25

DT 0.61 0.57-0.64 0.88 0.98 0.90 0.94 0.20

RF 0.81 0.78-0.85 0.89 1.00 0.89 0.94 0.15

LR 0.81 0.78-0.84 0.88 0.98 0.90 0.94 0.23

KNN 0.76 0.72-0.80 0.88 0.99 0.89 0.94 0.12

Abbreviations: AUC, area under the curve; DT, decision tree; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; XGBoost, eXtreme gradient

boosting.
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better the accuracy of the model. The XGBoost model had the

best accuracy (Supplementary Figure 1).
Discussion

Given the critical condition of AHF patients, the risk of

admission to the ICU is relatively high. If physicians can accu-

rately predict patient prognosis, they can better choose treat-

ment strategies and allocate medical resources. This study

used data from the MIMIC-IV database to develop and vali-

date five prediction models based on the ML algorithm for pre-

dicting the in-hospital mortality rate of AHF patients in the

ICU. To avoid overfitting, LASSO regression analysis was

used to screen for independent risk factors for in-hospital mor-

tality before constructing a ML model using the collected data.

The results indicated that the XGBoost model performed

best in AHF prediction, which was consistent with some previ-

ous studies.24,25 XGBoost is a ML technique with the remark-

able features of processing missing data efficiently and

flexibly and assembling weak prediction models to build an

accurate one.26 The XGBoost model had better predictive abil-

ity than the LR model in predicting in-hospital mortality in

AHF patients. The LR algorithm cannot detect complex non-

linear relationships and interactions between independent and

dependent variates, and is sensitive to multicollinearity of

independent variates, which may lead to inaccurate models.

The XGBoost model can effectively address the shortcomings
Fig 4. Receiver operator characteristic (ROC) curves for the XGBoost model and R

set and validation set). ROC curves for four models predicting in-hospital mortality

KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; XGBoost, eX
of LR and develop more accurate prediction models. There-

fore, the application of the XGBoost algorithm is increasing.27

Finally, the XGBoost model was selected as the best predic-

tive model and its predictive ability was compared with tradi-

tional ICU disease severity scores. The results showed that the

XGBoost model had better predictive ability. The importance

of model variates based on the XGBoost algorithm were also

ranked, and the top ten variates were: norepinephrine, urine

output, age, white blood cell (Wbc)_min, saturation pulse oxy-

gen (SpO2)_min, RR_mean, BUN_min, systolic blood pressure

(Sbp)_mean, partial thromboplastin time (PTT)_min, and

HR_mean (Fig 6).

Norepinephrine is a highly effective and reliable vasopres-

sor with many advantages, including: (1) raising blood pres-

sure effectively, (2) increasing the cardiac index without

increasing HR and without excessively increasing myocardial

oxygen consumption, and (3) not acting on b-2 receptors with-
out increasing lactate levels. Research has shown that the level

of plasma norepinephrine is an important marker for predicting

mortality in HF patients.28,29 In the current study, the use of

norepinephrine was also an important predictor of mortality in

AHF patients. This may be due to the poor cardiac function of

the patients, and the insufficient enhancement of sympathetic

nervous activity to improve cardiac function, requiring exoge-

nous supplementation of norepinephrine.

A large proportion of HF patients were admitted to the hos-

pital due to worsening fluid overload.5,30 Urination can reduce
OC curves for common scoring systems predict in-hospital mortality (training

in the training set (A) and validation set (B), respectively. DT, decision tree;

treme gradient boosting.



Fig 5. Decision curve analysis for machine learning (ML) models. The y-axis measures the net benefit. The “All” line represents the assumption that all patients

die in the hospital. The “None” line represents the assumption that no patients die in the hospital. DT, decision tree; KNN, k-nearest neighbor; LR, logistic regres-

sio; RF, random forest; XGBoost, eXtreme gradient boosting.
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volume load. What’s more, urine output can reflect the

patient’s organ perfusion. There are also many studies that

have shown that urine output is an important variate in predict-

ing the risk of death in patients.31,32 This is consistent with the

current research findings. However, in the data extracted, the

proportion of patients with renal function impairment or renal

failure was very small. Although these impairments were also

associated with in-hospital mortality, they were not considered

independent variates to avoid bias in the results. Further analy-

sis should be conducted in subsequent studies.

HF is a common condition in older adults that results from

the complex interplay of age-related diseases and age-associ-

ated physiologic changes.33 First, age is associated with

reduced responsiveness to beta-adrenergic stimulation, which

causes maximum HR declines 34; Second, aging alters left ven-

tricular diastolic filling, which effects cardiac filling35; the

change in age also directly leads to the development or
Table 3

Predictive Performances of the XGBoost Model and Common Scoring Systems for

Model AUC 95% CI Accuracy

XGB 0.82 0.78-0.85 0.90

LODS 0.78 0.74-0.82 0.88

SAPSII 0.75 0.71-0.78 0.88

SOFA 0.70 0.66-0.74 0.88

AUC, area under the curve; LODS, Logistic Organ Dysfunction System; SAPSII, Si

Assessment; XGBoost, eXtreme gradient boosting.
deterioration of HF.33 In this study, age was also an important

variate affecting the in-hospital mortality of HF patients.

The number of Wbc is a cellular marker of systemic inflam-

mation. Compared with the level of specific inflammatory

markers that only focus on certain immune systems, Wbc

counts reflected the overall activity of the immune system.36

Studies have shown that Wbc count is associated with HF

risk.37 Moreover, Wbc count is an indicator reflecting overall

immune system activity and has been reported to be associated

with the risk of short- and long-term mortality of HF

patients.38,39 In this study, Wbc was also shown to be an

important variate in predicting in-hospital mortality in AHF

patients.

SpO2, RR, BUN, systolic blood pressure, HR, and partial

thromboplastin time have also been proven to be significant

predictors of mortality in HF patients in other studies.16,19,40

This is also consistent with the current research findings.
Predicting In-hospital Mortality

Sensitivity Precision F1 Score Specificity

0.99 0.90 0.94 0.25

0.99 0.89 0.93 0.11

0.99 0.89 0.93 0.12

1.00 0.89 0.93 0.03

mplified Acute Physiology Score II; SOFA, Sequential Organ Failure



Fig 6. Importance ranking of variates. BUN_min, blood urea nitrogen minimum; HR_mean, heart rate mean; PTT_min, partial thromboplastin time minimum;

RR_mean, respiratory rate mean; Sbp_mean, systolic blood pressure mean; SpO2_min, saturation pulse oxygen minimum; WBC_min, white blood cell minimum.
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Some limitations of this study must be considered: First, this

was a retrospective study, which may lead to inevitable selec-

tion bias. Second, as the data only came from the MIMIC-IV

database, this may affect the extension of the prediction model

to other populations. Therefore, it is necessary to conduct

large-scale, multicenter research for external validation. Third,

multiple imputation methods were used to fill in missing data,

which may lead to deviations from the true values. Fourth,

although a XGBoost model with good predictive ability was

constructed, the model lacks interpretability due to the “black

box” of ML. However, the authors believe that the constructed

model is helpful for clinicians to effectively treat AHF

patients.

Conclusion

In conclusion, this study demonstrated that ML based on the

XGboost algorithm is indeed superior to traditional LR and

common scoring systems, which may assist clinicians in pre-

cise management and early intervention of patients with AHF

to reduce mortality.
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