
Citation: Benjamin, M.M.; Rabbat,

M.G. Artificial Intelligence in

Transcatheter Aortic Valve

Replacement: Its Current Role and

Ongoing Challenges. Diagnostics 2024,

14, 261. https://doi.org/10.3390/

diagnostics14030261

Academic Editors: Michael Henein

and Ayman El-Baz

Received: 15 December 2023

Revised: 18 January 2024

Accepted: 20 January 2024

Published: 25 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Artificial Intelligence in Transcatheter Aortic Valve Replacement:
Its Current Role and Ongoing Challenges
Mina M. Benjamin 1,* and Mark G. Rabbat 2,3

1 Division of Cardiovascular Medicine, SSM—Saint Louis University Hospital, Saint Louis University,
Saint Louis, MO 63104, USA

2 Department of Cardiovascular Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
mrabbat@lumc.edu

3 Department of Cardiology, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
* Correspondence: mina.mehanni@ssmhealth.com

Abstract: Transcatheter aortic valve replacement (TAVR) has emerged as a viable alternative to surgical
aortic valve replacement, as accumulating clinical evidence has demonstrated its safety and efficacy.
TAVR indications have expanded beyond high-risk or inoperable patients to include intermediate and
low-risk patients with severe aortic stenosis. Artificial intelligence (AI) is revolutionizing the field
of cardiology, aiding in the interpretation of medical imaging and developing risk models for at-risk
individuals and those with cardiac disease. This article explores the growing role of AI in TAVR
procedures and assesses its potential impact, with particular focus on its ability to improve patient
selection, procedural planning, post-implantation monitoring and contribute to optimized patient
outcomes. In addition, current challenges and future directions in AI implementation are highlighted.
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1. Introduction

Transcatheter aortic valve replacement (TAVR) has emerged as a transformative ap-
proach, revolutionizing the management of severe aortic valve stenosis. The expanding
indications for TAVR now include intermediate- and low-risk patients, reflecting its in-
creasing acceptance and proven benefits across a wider spectrum of patients. Long-term
follow-up studies, such as the PARTNER 2 [1] and SAPIEN 3 [2] trials, have confirmed the
durability and sustained clinical benefits of TAVR, establishing it as the standard of care
for aortic valve replacement in many clinical scenarios. According to national registries
and large-scale studies, the number of TAVR procedures performed globally has shown a
substantial increase, outpacing surgical aortic valve replacement [3].

The field of cardiology is witnessing significant advancements driven by the integra-
tion of artificial intelligence techniques in various domains. Artificial intelligence, powered
by advanced computational capabilities and efficient data processing, has opened new
avenues for improving care and reducing costs in medicine. Machine learning encompasses
a broad range of techniques that enable computers to learn from data and improve their per-
formance over time, without being explicitly programmed. Statistical methods commonly
used in machine learning include regression, classification, clustering, hypothesis testing,
cross-validation, and feature selection. Increased availability of large sets of data and devel-
oping computing power has led to a surge in supervised machine learning approaches with
a wide range of potential applications, including the identification of potential therapeutic
targets and drug development. Deep learning, a branch of machine learning, focuses on
training deep neural networks, which are models inspired by the structure and function
of the human brain. These deep neural networks consist of multiple layers of intercon-
nected nodes, called neurons, that process and transform the data during learning. Within
the realm of cardiology, artificial intelligence plays a significant role by assisting in the
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interpretation of medical imaging, such as echocardiograms and cardiac MRIs [4]. Addi-
tionally, artificial intelligence-powered wearable devices and remote monitoring systems
can continuously track cardiac parameters, providing real-time insights and facilitating
remote patient management for better overall cardiovascular health. Moreover, artificial
intelligence-driven predictive models can analyze patient data and identify individuals
at higher risk of cardiac events, enabling early intervention and better preventive care
strategies. The application of artificial intelligence in TAVR procedures is being explored in
order to improve patient selection and procedural planning and optimize patient outcomes
and post-implantation valve monitoring.

In this article, we aim to highlight the growing role of artificial intelligence techniques
and algorithms in TAVR procedures, and specifically focus on the following areas:

• Making a diagnosis of severe aortic stenosis
• Patient selection
• Procedural planning and execution
• Predicting post-procedural morbidity and mortality

We also added a comprehensive limitations section, cautioning against the current
optimistic hype surrounding the future role of artificial intelligence in clinical medicine, on
the grounds this may lead to the premature adoption of unvalidated artificial intelligence
algorithms in real-world settings, potentially compromising patient safety and quality of
care. In considering the role of artificial intelligence in TAVR procedures, we also highlight
current challenges and future directions.

2. Diagnosis of Severe Aortic Stenosis

Diagnosing severe aortic stenosis can be challenging because of its often asymptomatic
nature in the early stages and overlap with the symptoms of other cardiovascular conditions.
Traditionally, an increased gradient was used to diagnose severe aortic stenosis; however,
fairly recently, an additional category of severe aortic stenosis has been identified in patients
with low flow, defined as a stroke volume indexed to body surface area ≤35 mL/m2. These
patients might not meet the cutoff gradient for severe aortic stenosis, but their calculated
valve area will be in the severe range (i.e., <1 cm2). An accurate diagnosis is crucial as it
enables timely intervention and appropriate management, preventing disease progression
and improving patients’ quality of life and long-term prognosis. Although transthoracic
echocardiography is the primary test for diagnosing and evaluating severe aortic stenosis,
additional testing might be needed (including dobutamine stress echocardiography, and,
in certain situations, aortic valve calcium scoring), as we detail below.

Artificial intelligence has shown that screening patients for severe aortic stenosis can
even begin with electrocardiograms (EKGs), which are not typically used to diagnose
aortic stenosis but are instead generally performed as a component of the initial evaluation.
The main value of the EKG in this setting is to detect concomitant conditions such as atrial
fibrillation and coronary disease, although similar repolarization abnormalities are caused
by left ventricular hypertrophy and ischemia. Kwon et al. developed a deep learning-based
algorithm by using over 39,000 EKGs which used the T-wave axis in leads V1–V4, the QT
interval, and the patient’s age, to detect moderate or severe aortic stenosis with an area
under the curve (AUC) of 0.861 [5].

The echocardiographic exam in patients with aortic stenosis includes the evaluation of
valve anatomy and structure, valve hemodynamics, hemodynamic consequences (such as
left ventricular hypertrophy or pulmonary hypertension), and concomitant aortic insuffi-
ciency; other cardiac valves are also evaluated during the echocardiogram. The echocardio-
graphic exam is also important to determine eligibility for TAVR, provide guidance during
the procedure, and assist follow-up after the procedure. A major issue in the echocardio-
graphy lab is the interobserver variability, which arises due to differences in experience,
training, and subjective judgment between readers, leading to discrepancies in diagnostic
results. Aortic stenosis is notoriously prone to interobserver variability due both to the
previous factors, and also a multitude of parameters that contribute to the computation of
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the aortic valve area. Artificial intelligence has shown great potential in various applica-
tions within the field of echocardiography, offering a promising solution to address issues
related to interobserver variability and improving efficiency in busy echocardiography
laboratories. By assisting with echocardiography interpretation, artificial intelligence can
also play a vital role in situations or locations where qualified individuals may not be
readily accessible. Deep learning models have demonstrated efficacy in identifying left
ventricular hypertrophy, which is associated with aortic stenosis, and also in accurately
measuring left ventricular volumes and dysfunction [6]. Ventricular strain refers to the
extent of deformation or stretching experienced by the myocardium during the cardiac
cycle. It is a measure of the mechanical stress placed on the ventricular walls and has
been shown to detect subtle myocardial damage that has not manifested as a decline in the
ejection fraction and can also be used to evaluate adverse ventricular remodeling. Strain
can be measured by echocardiography or cardiac magnetic resonance imaging. Cardiac
magnetic resonance has proven to be a viable alternative to echocardiography when the
quality of echocardiograms is inadequate. Cardiac magnetic resonance provides highly
detailed multi-planar images, allowing for comprehensive visualization of the aortic valve
and surrounding structures. Unlike echocardiography, cardiac magnetic resonance is not
limited by acoustic windows, and provides clearer views, even in patients with challeng-
ing anatomy. Compared to CT, cardiac magnetic resonance sequences provide enhanced
temporal resolution, albeit at the cost of a more extended scanning time [7,8].

The use of CT calcium scoring of the aortic valve can be useful in cases where echocar-
diographic results are equivocal or when low-flow, low-gradient severe aortic stenosis is
present. The threshold used to identify true severe aortic stenosis is ≥1200 AU for women
and ≥2000 AU for men. The severity of aortic valve calcification by CT is also predictive
of mortality. Deep learning models that use CT scans to automatically segment and score
aortic valve calcification have been developed [9], and some studies have aimed to derive
aortic valve calcium scores from CTs obtained for other purposes, such as low-dose lung
cancer screening or PET studies; these CTs however recorded suboptimal results, due to
significant heterogeneity in their scanning protocols [10].

3. Patient Selection

One area where artificial intelligence is making significant contributions to TAVR proce-
dures is in patient selection. In 2017, the European Society of Cardiology (ESC) guidelines
expanded the TAVR patient collective to include intermediate risk patients and some low-risk
patients who fulfill certain criteria that favor TAVR [11]. The 2020 American College of Car-
diology/American Heart Association (ACC/AHA) guidelines marked a paradigm shift, in
which the emphasis moved from a pure risk-related assessment to age- and durability-related
considerations [12]. This change reflected the significant improvements in the transcatheter
approach, reductions in intervention-related complications and studies of progressively lower
risk patient groups. Hasimbegovic et al. used data from 532 patients who were enrolled in
the VIenna CardioThOracic Aortic Valve RegistrY (VICTORY). They developed a machine
learning-based approach for predicting the decision for TAVR versus surgical aortic valve
replacement, which performed excellently (AUC 0.91 with 90% accuracy, 92% sensitivity
and 90% specificity), demonstrating that machine learning can tap into the studying and
understanding of complex clinical decision-making processes [13].

4. Pre-Procedural Planning

The pre-procedural process for TAVR entails screening for coronary artery disease,
which now often uses coronary CT angiography. Artificial intelligence algorithms can
model and predict coronary fractional flow reserve (FFR) values from CT angiography data,
allowing for non-invasive assessment of the hemodynamic significance of intermediate
lesions, leading to the safe deferral of unnecessary invasive coronary angiography and
reducing complications [14–16]. CT, which is now recommended as an essential preliminary
investigation for patients undergoing TAVR, provides ample anatomical detail for valve
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selection and sizing, and allows for the evaluation of potential complications, including
the risk of annular rupture, which is crucial for ensuring patient safety. It also provides
an assessment of peripheral vascular access, aiding the determination of the most suitable
approach and reducing the likelihood of access-related complications.

These scans are typically analyzed by a trained cardiologist or radiologist and are labor-
intensive. Artificial intelligence algorithms have been developed for automating the critical
steps from CTs, such as determining the aortic valve annular plane (Figure 1) and determin-
ing the access route (Figure 2). By leveraging machine learning techniques, these algorithms
can measure the aortic annulus and aid device sizing with great precision, minimizing
human error and optimizing patient-specific treatment strategies [17–19]. Santaló-Corcoy
et al. developed TAVI-PREP, a fully automated deep learning-based method, for pre-TAVI
planning. TAVI-PREP uses MeshDeformNet for 3D surface mesh generation and a 3D
Residual U-Net for landmark detection. TAVI-PREP is designed to extract 22 different
measurements from the aortic valvular complex. The mean absolute relative error was
within 5% for most measurements, except for left and right coronary height [20]. During the
TAVR procedure, an optimal view is essential when the X-ray tube C-arm is perpendicular
to the aortic annulus plane, as this allows the operator to achieve appropriate delivery of
the valve. Theriault Lauzier et al. developed a convoluted neural network to infer the
location and orientation of the aortic valve annular plane. The proposed algorithm had
accuracy on par with proposed automated methods for localization and approaches an
expert-level accuracy. Here, note that the method is not specific to the aortic valve and may
be generalizable to other anatomical features [21]. Samin et al. developed an automated
method in which a 3-D model derived from cardiac CTs can be used to predict the best line
of perpendicularity of the proposed TAVR valve, and thus provide the best C-arm angle for
alignment of the new valve with the aortic valve annulus [22].

Cardiac magnetic resonance can also be used as an alternative to CT in pre-TAVR
planning, and specifically for patients whose renal function prohibits iodinated contrast
or who have experienced a severe allergic reaction to iodine. Recently developed cardiac
magnetic resonance advances enable full 4D mapping of intravascular flows, and provide
a crucial function that can be used to assess hemodynamics in patients with severe aortic
stenosis [7,8].

Recently, computational models have been developed to potentially allow the virtual
implantation of various device sizes at different implantation depths for a specific patient,
with the goal of providing insights that are needed for physician decision-making and
procedure planning. These simulations show blood flow profiles that can be used to assess
hemodynamics after valve implantation, and also predict the mechanical stress imposed
by the proposed valve on the tissue structures, such as contact pressure and wall shear
stress on the aortic wall, along with principal stress on the aortic leaflets. Fluid structural
interaction (FSI) computations are comprehensive and consider blood flow during the
cardiac cycle, coupled with the structural mechanics of the valve [23]. However, these
highly complex computations are considered to be impractical. Finite element analysis
(FEA) and computational fluid dynamics (CFD) models, which are less complex, have
also been investigated l. Finite element analysis focuses on determining the stent contact
areas on walls, which is important in the assessment of anchoring. This simplified model
type neglects blood flow and therefore does not reliably simulate the dynamics of the
valve [24,25]. Computational fluid dynamics studies, on the other hand, consider blood
flow dynamics, enabling assessment of valve function and the identification of potential
paravalvular leakages [26]. Again, these techniques still require long computational times,
which often renders them impractical for clinicians. There is great potential that deep
learning approaches can expedite these models. Liang et al. proposed a model to directly
estimate the stress distributions of the aorta for ascending aortic aneurysm patients, and
developed a fully connected neural network that can compute stress distributions at a
much faster rate than finite element analysis [27]. Similarly, fully connected neural network
have been conceived and developed as a faster alternative to computational fluid dynamics
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and used to estimate the steady-state distributions of pressure and flow velocity inside the
thoracic aorta, [28]. Balu et al. developed a deep learning-based model to learn about the
deformation biomechanics of bioprosthetic aortic valves. A convoluted neural network
was developed to predict the final deformed, closed shape of the heart valve from the input
aorta geometry of the original undeformed heart valve [29]. Oldenburg et al. used a U-Net
architecture to predict simplified 2D flow during peak systolic steady-state blood flow
through mechanical aortic valves with varying opening angles in randomly generated aortic
root geometries, achieving a validation error below 0.06. The neural network generates flow
field prediction in real time, which is more than 2500 times faster than computational flow
dynamics simulation [30]. These models are not currently ready for prime-time application,
and more comprehensive models that are specific to TAVR need to be developed and
applied on a larger scale before they can be incorporated into the daily workflow.
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5. Predicting Mortality Risk

Predicting mortality before TAVR is of paramount importance as it allows clinicians to
assess the potential risks and benefits of the procedure for individual patients, aiding in
informed decision-making. Accurate mortality prediction helps optimize patient selection,
enhance procedural planning, and improve patient outcomes by tailoring treatment strate-
gies based on individual risk profiles. The most commonly used surgical risk assessment
models for predicting outcomes in patients with severe aortic stenosis include the logistic
EuroSCORE I, EuroSCORE II, and the Society of Thoracic Surgeons (STS) score, which
all predict 30-day survival [31,32]. For TAVR, they are poor predictors of mortality that
focus on procedural or 30-day mortality, and this also applies to the TAVR-specific TVT
registry score [33]. The prediction of one-year mortality is even more challenging, and so
TAVI2-SCORE and CoreValve models that are TAVR-specific were devised [34,35]. CAPRI
risk scores, which based on the linear predictors of Cox models, including thoracic aortic
calcification and comorbidities and demographic, atherosclerotic disease and cardiac func-
tion factors were also developed [36]. Artificial intelligence has shown promising results in
predicting risk following TAVR by leveraging advanced algorithms to analyze a patients’
clinical data and provideimaging results and has, in so doing, outperformed traditional
scoring systems. Evertz et al., showed the automated quantification of ventricular volumes
and function was noninferior to human reader quantification that sought to predict cardio-
vascular mortality after TAVR. In addition, fully automated quantification also resulted in
a time saving of ten minutes per patient [7]. Abdul Ghaffar et al. used a semi-supervised
automated machine learning approach to classify patients into phenotypic groups, who
were ordered by their estimated mortality. Their patient similarity network identified five
patient phenogroups, and substantial variations in clinical comorbidities and in-hospital
and 30-day outcomes. For 30-day cardiovascular mortality, the use of phenogroup data in
conjunction with the STS score was found to improve the overall prediction of mortality,
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when compared against using the STS scores alone (AUC 0.96 vs. AUC 0.8, p = 0.02) [37].
Similarly, Gomes et al. studied 83 features of 451 consecutive patients who underwent
TAVR and found machine learning methods were superior to STS and STS/ACC TAVR
scores in predicting all-cause intrahospital mortality [38]. Another machine learning pre-
diction model developed by Agasthi et al., which included 163 variables from 1055 TAVR
patients, outperformed TAVI2-SCORE and CoreValve Score in predicting mortalityoneyear
after TAVR (AUC 0.72 vs. 0.56 and 0.53) [39]. Hernandez-Suarez et al. conducted the
second largest study to derive a risk prediction model frompatients who underwent TAVR,
and found it was second to the STS/ACC TVT score. They developed a NIS-TAVR score
from a cohort of over 10,000 TAVR patients with a 3.6% total mortality rate and developed
a model that outperformed established risk calculators, with an AUC of 0.92 [40].

6. Predicting Specific Outcomes

Artificial intelligence models have also been developed to predict specific complica-
tions after the TAVR implantation. Length of stay following TAVR continues to improve,
but significant gaps remain in meeting early discharge goals. Judson et al. used data from
9360 outpatient TAVR procedures, and developed a supervised random forest plot machine
learning algorithm to identify variables involved in short (<36 h) and long (≥72 h) length
of stay. The predictive power of machine learning models (AUC 0.82 and 0.85) was more
robust than the standard multivariate model (AUC 0.65, and 0.65). Several novel predictors
were identified in the algorithm, including procedural duration, need for post-procedure
physical therapy, and procedure day of the week [41]. 30 days after TAVR, one in three
readmissions was attributed to heart failure and associated with higher readmission mor-
tality rates. Predicting heart failure admissions after TAVR holds would allow healthcare
providers to proactively manage patients’ postoperative care, optimize treatment strategies,
and allocate resources effectively. Khan et al. used data from 92,363 TAVR cases drawn
from the National Readmission Database, and found a total of 3299 (3.6%) were readmitted
within 30days with HF. A total of seven variables, based on predictive ability as well as
clinical relevance, were selected and a performance evaluation that used the testing dataset
achieved an AUC of 0.76 [42].

Evidence about the frequency and clinical significance of subclinical valve leaflet
thrombosis of bioprosthetic valves following TAVR is emerging, and subclinical thrombosis
has been found to be associated with significantly increased rates of transient ischemic
attacks. Bailoor et al. conducted a computational proof-of-concept study and demonstrated
the feasibility of using artificial intelligence algorithms for detecting reduced mobility in
individual leaflets of prosthetic valves by using pressure measurements from microsensors
embedded on the valve stent. By leveraging data-driven analysis and machine learning
techniques, their artificial intelligence-based approach achieved an accuracy rate of over
90% in the prospective detection of leaflet dysfunction [43].

Cerebrovascular events are a potential complication of TAVR procedures. Accord-
ing to published registries, the overall incidence rate of stroke in high-risk patients after
TAVR varied from 1.7% to 4.8%, compared with 0.5%–5.7% for surgical aortic valve re-
placement [44,45]. Okuno et al. developed a machine learning model by using data from
2279 patients to predict 30-day cerebrovascular events (AUC 0.79) [46], and Baig et al. de-
veloped a real-time autonomous intraoperative neuromonitoring tool that used transcranial
doppler from patients undergoing TAVR [47].

Conduction abnormalities leading to the need for permanent pacemaker implantation
is one of the most common TAVR postprocedural complications, with an incidence of
up to 22% in some studies. TAVR results in an increased likelihood of native conduction
system damage, owing to a combination of significantly greater patient comorbidity and the
mechanism of TAVR deployment [48]. Truong et al. retrospectively studied 557 patients in
sinus rhythm undergoing TAVR and developed machine learning models for assessing the
likelihood of permanent pacemaker implantation. They incorporated data from pre- and
post- TAVR EKGs, and also drew on clinical and echocardiographic data in their analysis.
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The random forest model performed better than the logistic regression model in predicting
permanent pacemaker implantation risk (AUC: 0.81 vs. 0.69) [49].

The rate of bleeding complications is reported to be 3% to 11% within the first year
of TAVR, with most episodes occurring early [50]. The median onset of late bleeding
(>30 days) is 132 days in PARTNER registries. Bleeding is a strong independent risk factor
for mortality for between 30 days and one year (adjusted HR 3.91, 95% CI 2.67–5.71) in the
PARTNER randomized cohorts and continued access registries. The most frequent types of
major late bleeds were gastrointestinal (41%), neurological (16%), and traumatic fall-related
(8%) [1]. Navarese et al. incorporated more than 100 clinical variables from 5185 consecutive
patients undergoing TAVR in the prospective multicenter RISPEVA (Registro Italiano GISE
sull’Impianto di Valvola Aortica Percutanea) to develop a model whose performance was
externally validated in 5043 TAVR patients by the prospective multicenter POL-TAVI (Polish
Registry of Transcatheter Aortic Valve Implantation) database. The model uses six items to
predict the 30-day risk of post-TAVR bleeding. External validation produced a 30-day AUC
of 0.78 (95% CI: 0.72–0.82) [51]. Jia et al. developed a deep learning-based model named
BLeNet with 56 features (covering baseline, procedural, and post-procedural characteristics)
to predict post-procedural bleeding. The BLeNet model significantly outperformed the Cox-
Proportional-Hazard and random survival forest models in discrimination and calibration.
In the Kaplan-Meier analysis, the BLeNet model showed great performance in stratifying
high- and low-bleeding risk patients (p < 0.0001) [52].

Left ventricular mass regression is an expected phenomena in patients who have under-
gone aortic valve replacement. This regression is reported to be tightly correlated with survival
after the intervention, in years one and five. Asheghan et al. drew on CT data from 66 patients
and statistical shape analysis techniques, and combined them with customized machine
learning methods to extract latent information from segmented left ventricle shapes, which
enabled them to predict left ventricular mass index regression a year after TAVR. The average
accuracy of the predictions was validated against clinical measurements and used to calculate
root mean square error and R2 score, which yielded values of 0.28 and 0.67, respectively, for
the test data [53]. A summary of the machine models used for patient selection, procedure
planning and risk assessment, are summarized in Table 1.

Cardiac magnetic resonance can also be used after TAVR to provide an accurate estimate
of ventricular function, and to detect and quantify paravalvular leak [54]. Rapid ventricular
pacing routinely performed during TAVR has been shown to lead to microcirculatory arrest.
This propensity—at least theoretically—can lead to subendocardial ischemia and myocardial
necrosis. Cardiac magnetic resonance is being explored to evaluate myocardial necrosis [55],
strain [56] and wall motion [57] after TAVR procedures. All these cardiac magnetic resonance
features now use deep learning algorithms and require minimal human processing [7].
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Table 1. Examples of machine learning platforms and models developed for TAVR patient selection, procedure planning and risk prediction.

Reference Study Cases Comparison Outcome ML Model Main Results

Diagnosing severe AS

Kwon [5]
39,371 EKGs. 6453 for internal
validation and 10 865 for external
validation

none More than moderate. AS confirmed by
echocardiography. DNN + CNN

AUC 0.884 (95% CI, 0.880–0.887) and
0.861 (95% CI, 0.858–0.863) for internal
and external validation, respectively

Chang [9] 589 CTs (412 training, 40 validation
and 137 testing)

Manually measured AV calcium
volume and Agatston score Accurate grading of AS severity modified 3D U-net CNN

Agatston score accuracy of
grading = 92.9%. AUC = 0.933 (95%
CI 0.885–0.981), outperformed
radiologist readers.

Patient selection

Hasimbegovic [13] 532 patients from VICTORY Registry Heart team decision SAVR versus TAVR ML-based 3-layer model AUC 0.91 (90% accuracy, 92%
sensitivity and 90% specificity)

Pre-procedural planning

Santaló-Corcoy [20] 200 CTs (35 for training, and 17
for testing)

Manual CT measurement by an expert
cardiologist using 3Mensio.

Correlation between manual and
automated measurements

DL algorithms (MeshDeformNet) for
landmark detection followed
by segmentation

mean absolute relative error was
within 5% for most measurements,
except for coronary height
(11.6% and 16.5%).

Theriault-Lauzier [21] 94 CTs of severe AS (K-fold
cross-validation with K=) Manually segmented AV annulus Correlation between manual and

automated measurements

recursive
multiresolution CNN for localization
of the AV annulus centroid

average out-of-plane localization error
of 0.9± 0.8 mm for the evaluation
dataset. The proposed algorithm is on
par with automated methods for
localization and approaches in
providing an expert-level accuracy.

Samin [22] 60 CTs (24 retrospectively, 36
prospectively) fluoroscopy accurate prediction (<5◦

difference) of LP Not detailed

Automated 3D analysis of CTs
accurately predicted the LP aortic
annulus and the corresponding C-arm
position required in 8/8, 16/17, and
10/11 in patients with mild, moderate,
or severe calcifications.

Predicting mortality risk

Abdul Ghaffar [37] 354 TAVR cases divided into 2 cohorts STS score In-hospital and 30-day CV and
all-cause mortality

TDA and a cloud-based supervised
AutoML platform (OptiML)

The patient similarity network
identified five patient phenogroups
with substantial variations in clinical
comorbidities and in-hospital and
30-day outcomes. Group 5 was
associated with higher rates of 30-day
CV mortality (OR 18, 95% CI 3–94),
and 30-day all-cause mortality (OR 3,
95% CI 1.2–9).
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Table 1. Cont.

Reference Study Cases Comparison Outcome ML Model Main Results

Gomes [38] Retrospective study of 451 TAVR cases STS score

In-hospital and 30-day all-cause
mortality; Secondary outcomes;
Stroke, vascular complications;
Paravalvular leak; and PPI

neural networks, support vector
machines, and RF

performance of all MLmodels in
predicting all-cause intrahospital
mortality (AUC 0.94–0.97) was
significantly higher than both the STS
score (AUC 0.64), the STS/ACC TAVR
score (AUC 0.65). Secondary
outcomes could not be
accurately predicted.

Agasthi [39] 1055 TAVR cases TAVI2-SCORE and CoreValve score. One-year mortality GTB

AUC for GTB vs. TAVI2-SCORE and
CoreValve Score was 0.72 (95% CI
0.68–0.78) vs. 0.56 (95%CI 0.51–0.62)
and 0.53 (95% CI 0.47–0.59)

Hernandez-Suarez [40] NIS database (2012–2015).
(development: 7615, validation: 3268). none In-hospital mortality Logistic regression, artificial NN,

naive Bayes, and random forest

The prediction models showed good
AUC performance AUC (>0.80).
The best model was obtained by
logistic regression (area under the
curve: 0.92; 95% confidence interval:
0.89 to 0.95). Most obtained models
plateaued after 10 variables
were introduced.

Predicting specific complications

Judson [41] 9360 cases from the BIOME dataset
(2017–2021) standard multivariate model short length of stay (<36 h) and long

length of stay (≥72 h) RF

The predictive power, of both the
short LOS (AUC 0.82) and long LOS
(AUC 0.85) ML model, was more
robust than the standard multivariate
model (SLOS AUC 0.65, LLOS
AUC 0.65).

Khan [42]

92,363 cases from National
Readmission Database (2015–2018;
70% training, 20% validation,
10% testing)

none 30-day readmission for heart failure “AutoScore” package, a ML-based
automatic clinical score generator

AUC of TAVR-HF Score was 0.761
(95% CI 0.744–0.778)

Okuno [46] 2279 TAVR patients from Swiss TAVR
registry (2/3 training, 1/3 test) none 30-day Cerebrovascular events ANN

The constructed model uses less than
107 clinical and imaging variables,
and has AUC of 0.79 (0.65–0.93).

Truong [49] 557 cases-single center (75% training,
25% test) logistic regression Permanent pacemaker implantation

(PPI) RF
The RF model performed better than
logistic regression model in predicting
PPI risk (AUC: 0.81 vs. 0.69).

Navarese [51]
5185 cases from RISPEVA, validated
in 5043 cases from the prospective
POL-TAVI

PARIS and HAS-BLED scores Major and minor bleeding within 30
days and 1 year

ML and univariate analyses were
used for variable selection

The Optimism bootstrap-corrected
AUC was 0.79 (95% CI: 0.75–0.83).
Compared with PARIS and
HAS-BLED, PREDICT-TAVR showed
superior net benefit and improved
predictive performance for all
bleeding risk thresholds >2.5%
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Table 1. Cont.

Reference Study Cases Comparison Outcome ML Model Main Results

Jia [52] 668 cases-single center Traditional Cox-PH and RF Major or life-threatening bleeding CNN

The BLeNet model outperformed the
Cox-PH and RSF models
[optimism-corrected c-index of
BLeNet vs. Cox-PH vs. RSF: 0.81 (95%
CI: 0.79–0.92) vs. 0.72 (95% CI:
0.63–0.77) vs. 0.70 (95% CI: 0.61–0.74)]

Lopes [58] 1478 cases-single center (70% training,
30% testing) traditional logistic regression One year mortality and improvement

in dyspnea SVM, RFC, MLP, and GTB

The RF classifier achieved the highest
AUC (0.70) for predicting mortality.
Logistic regression had the highest
AUC (0.56) in predicting the
improvement of dyspnea.

AS: aortic stenosis; AUC: area under the curve; AV: aortic valve; CI: confidence interval; Cox-PH: Cox proportional hazard; CV: cardiovascular; DL: deep learning; GTB: gradient tree
boosting; LOS: length of stay; MLP: multi-layer perceptron; PPI: permanent pacemaker implantation; RFC: random forest classifier; SVM: support vector machine; TDA: topological
data analysis.
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7. Limitations, Challenges and Future Directions

While artificial intelligence holds immense potential for advancing TAVR procedures,
challenges must be addressed to ensure its safe and responsible integration. Caution should
be exercised regarding publication bias in artificial intelligence research, as studies with
positive outcomes may be more likely to be published, leading to an overestimation of
the technology’s validity and applicability [59]. As an example of the artificial intelli-
gence models that have not outperformed logistic regression, the model developed by
Lopes et al. did not have incremental value in predicting dyspnea in a population of
1478 patients who underwent TAVR, when compared to commonly applied likelihood
ratio techniques [58]. Challenges also include data privacy, poorly selected/outdated data,
selection bias, and unintentional continuance of historical biases/stereotypes in the data
that can lead to inaccurate conclusions [59]. Though several clinical decision support
models have been marketed, their safety, reproducibility, usability, validity, and reliability
have caused concern [60–62]. Currently, there is an observed trade-off between the accuracy
and interpretability of machine learning models. The numerous intertwined relationships
captured by the layers of a deep neural network are only partially understood and the
success of the models during implementation is not guaranteed. The interpretability of arti-
ficial intelligence models, particularly deep neural networks, remains an ongoing challenge,
requiring further research and validation [63]. To mitigate publication bias, systematic
reviews and meta-analyses that include both published and unpublished data are essential
to provide a more comprehensive and balanced assessment of TAVR outcomes. The paucity
of experienced reviewers in machine learning underscores the growing need for experts
who can thoroughly vet and evaluate the technical aspects of machine learning models
that have been proposed for publication. Their expertise is essential to ensure the quality,
validity, and ethical implications of these models, and to foster responsible and impactful
advancements in the field.

In the future, the models described in this manuscript will be validated and refined
at more TAVR centers. Rigorous validation, regulatory scrutiny, and close collaboration
between artificial intelligence developers and healthcare professionals are needed to ensure
that artificial intelligence technologies are effectively integrated into clinical practice. Ulti-
mately, we might anticipate deep learning models that integrate clinical data with imaging
counterparts from echocardiography and computed tomography, work to conclude the
feasibility of the procedure, identify the appropriate valve size, and assess the associated
risk for different complication.

In conclusion, the advanced artificial intelligence algorithms described in this paper
are promising tools that have, and will, further enhance the planning, execution and
postoperative follow up of TAVR procedures. However, the authors also believe that
nuanced clinical judgment by skilled physician teams will remain irreplaceable.
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