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Abstract
Objective: To determine if machine learning (ML) can predict acute brain injury (ABI) and identify modi�able risk
factors for ABI in venoarterial extracorporeal membrane oxygenation (VA-ECMO) patients.

Design: Retrospective cohort study of the Extracorporeal Life Support Organization (ELSO) Registry (2009-2021).

Setting: International, multicenter registry study of 676 ECMO centers.

Patients:

Adults (≥18 years) supported with VA-ECMO or extracorporeal cardiopulmonary resuscitation (ECPR).

Interventions: None.

Measurements and Main Results: Our primary outcome was ABI: central nervous system (CNS) ischemia,
intracranial hemorrhage (ICH), brain death, and seizures. We utilized Random Forest, CatBoost, LightGBM and
XGBoost ML algorithms (10-fold leave-one-out cross-validation) to predict and identify features most important
for ABI. We extracted 65 total features: demographics, pre-ECMO/on-ECMO laboratory values, and pre-ECMO/on-
ECMO settings.

Of 35,855 VA-ECMO (non-ECPR) patients (median age=57.8 years, 66% male), 7.7% (n=2,769) experienced ABI. In
VA-ECMO (non-ECPR), the area under the receiver-operator characteristics curves (AUC-ROC) to predict ABI, CNS
ischemia, and ICH was 0.67, 0.67, and 0.62, respectively. The true positive, true negative, false positive, false
negative, positive, and negative predictive values were 33%, 88%, 12%, 67%, 18%, and 94%, respectively for ABI.
Longer ECMO duration, higher 24h ECMO pump �ow, and higher on-ECMO PaO2 were associated with ABI.

Of 10,775 ECPR patients (median age=57.1 years, 68% male), 16.5% (n=1,787) experienced ABI. The AUC-ROC for
ABI, CNS ischemia, and ICH was 0.72, 0.73, and 0.69, respectively. The true positive, true negative, false positive,
false negative, positive, and negative predictive values were 61%, 70%, 30%, 39%, 29% and 90%, respectively, for
ABI. Longer ECMO duration, younger age, and higher 24h ECMO pump �ow were associated with ABI.

Conclusions: This is the largest study predicting neurological complications on su�ciently powered international
ECMO cohorts. Longer ECMO duration and higher 24h pump �ow were associated with ABI in both non-ECPR and
ECPR VA-ECMO.

Key Points
Question: Can machine learning (ML) accurately predict acute brain injury (ABI) in venoarterial-extracorporeal
membrane oxygenation (VA-ECMO) patients?

Findings: In a retrospective cohort study of 35,855 VA-ECMO and 10,775 extracorporeal cardiopulmonary
resuscitation (ECPR) patients from the Extracorporeal Life Support Organization (ELSO) Registry (2009-2021),
7.7% (n=2,769) and 16.5% (n=1,787) experienced ABI, respectively. ML predicted ABI with an AUC-ROC of 0.67 and
0.72 in VA-ECMO and ECPR patients, respectively. Longer ECMO duration and higher pump �ow were associated
with ABI for both cohorts. 
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Meaning: Clinicians should closely monitor ECMO duration and pump �ow rates for VA-ECMO/ECPR patients at
risk of ABI. 

Introduction
Extracorporeal membrane oxygenation (ECMO) is increasingly used for cardiopulmonary support.(1) Acute brain
injury (ABI), which includes central nervous system (CNS) ischemia, intracranial hemorrhage (ICH) and hypoxic-
ischemic brain injury, (HIBI) is reported to occur in up to 20% of adult venoarterial (VA)-ECMO patients(2) in the
Extracorporeal Life Support Organization (ELSO) Registry. Furthermore, this rate is as high as 33% in VA-ECMO
patients using noninvasive multimodal neuromonitoring at a single institution.(3) With greater ECMO usage and
more cases of ABI, accurately predicting ABI with modi�able risk factors such as hyperoxia(4), low pulse pressure
(PP)(5, 6), and hypercarbia(7) is important to lessen its occurrence.

In VA-ECMO, there have been several scoring systems developed to predict survival outcomes,(8–15) but their
generalizability is limited as they stem from single-center studies, are focused in a speci�c subset of patients (e.g.,
only cardiogenic shock), and were created from logistic regression. Machine learning (ML) leverages big data to
explore patterns and interactions without explicit programming from humans, thus offering distinct advantages to
traditional regression.(16) Furthermore, coupled with the large sample size of the ELSO Registry, ML may be the
most promising technique to adequately synthesize demographic and laboratory information to effectively predict
ABI.(17) Additionally, identifying variables in the ML model that impact clinical outcomes will inform ECMO
clinicians for mitigation of key risk factors for ABI.

Current literature applying ML to predict outcomes in ECMO patients is sparse and primarily focused on non-
neurological outcomes such as thrombosis/hemorrhage and mortality.(18–20) An ELSO Registry analysis of VA-
ECMO patients (n = 23,812) demonstrated ML yielded better prediction for in-hospital mortality (AUC-ROC = 0.80)
versus the SAVE score (AUC-ROC = 0.61).(19) This study demonstrated the power of ML when applied to the ELSO
Registry, and provided the impetus for this study designed to test the capability of ML to predict ABI.

Herein, we aimed to leverage ML to predict ABI in a large international cohort (the ELSO Registry) of ECMO
patients.

Methods

Study design and population
The Johns Hopkins Hospital Institutional Review Board approved this retrospective observational study
(IRB00216321) with a waiver of informed consent. “Retrospective Analysis of Outcomes of Patients on
Extracorporeal Membrane Oxygenation” is the study title. All procedures were followed in accordance with the
Helsinki Declaration of 1975 and the ethical standards of the responsible committee on human experimentation
(institutional or regional). The ELSO Registry is an international multicenter database from over several hundred
ECMO centers worldwide.(21) It collects clinical characteristics and demographics, pre-ECMO and on-ECMO
laboratory values such as arterial blood gas (ABG), on-ECMO complications, and outcomes like in-hospital
mortality.16 Comorbidity information was captured using the International Classi�cation of Diseases, 10th
Revision (ICD-10) codes.
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We included patients who were 1) 18 years of age or older; and 2) supported with VA-ECMO for extracorporeal
cardiopulmonary resuscitation (ECPR) and non-ECPR indications from 2009–2021. We excluded repeat ECMO
runs within the same patient to avoid bias and complexity. VA-ECMO and ECPR cohorts were analyzed separately.

Data collection
In total, 65 variables were collected (Fig. 1) for ML. The ELSO Registry collects ABG and hemodynamics pre-ECMO
support and on-ECMO. Both pre-ECMO ventilator settings and ABGs were drawn within 6 hours of starting ECMO
cannulation. If multiple ABGs existed within a speci�c period, the pre-ECMO ABG that was nearest to the start of
ECMO cannulation was chosen. On-ECMO hemodynamic and ABG information were drawn closest to 24 hours of
ECMO support. Values that were meant to be obtained simultaneously such as systolic and diastolic blood
pressure and oxygen saturation by pulse oximetry and by arterial blood gas were abstracted by a trained ELSO
data manager/abstracter from each center and were collected concurrently.

De�nitions
ABI was de�ned as the presence of infarction (ischemic stroke), diffuse ischemia (HIBI), intra/extra parenchymal
hemorrhage, intraventricular hemorrhage, seizures determined by electroencephalograph or clinically, and
neurosurgical intervention (examples include intracranial pressure monitor, external ventricular drain, and
craniotomy) during ECMO support. CNS ischemia was de�ned as ischemic stroke (determined by ultrasound,
computed tomography (CT), or magnetic resonance imaging (MRI))) and HIBI (determined by CT or MRI). ICH was
de�ned as intra/extra parenchymal hemorrhage and intraventricular hemorrhage (both determined by CT or MRI).
De�nitions for other variables included in our analysis are in the Supplemental Methods.

Outcomes
The primary outcome was the occurrence of ABI during ECMO support. Secondary outcomes included subtypes of
ABI such as CNS ischemia and ICH.

Statistical analysis
Continuous variables were represented as median with interquartile range. Categorical variables were presented as
frequency with percentages. The Wilcoxon rank-sum and Pearson’s chi-square tests were utilized to compare
continuous and categorical variables, respectively. Statistical signi�cance was set at a p-value < 0.05.

Data Pre-Processing
All categorical variables were one hot-encoded prior to running ML algorithms. Multiple imputation was used for
missing data. All missing variables are shown in Supplemental Table 1.

Machine Learning Algorithm and Pipeline
We examined the suitability of 4 ML algorithms in predicting ABI from the ELSO Registry containing variables
from pre-ECMO support and during ECMO support: Random Forest, CatBoost, LightGBM and XGBoost. For each
algorithm, we �ne-tuned the hyperparameters and used a Bayesian optimization onto our dataset split randomly
into training (70%) and test (30%) sets. Further details are noted in the Supplemental Methods.

Feature Importance Scores in ML
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To better understand how these ML models were constructed and to determine which variables were most
important in predicting ABI, we analyzed which variables were of highest importance in correctly predicting ABI.
Speci�cally, we examined the ranked feature importance in the best performing models, which discloses the
contribution of each variables in the composition of the boosted decision trees within the model. Furthermore,
Feature Importance Scores and Shapley Additive Explanations (SHAP) values depict the contribution of a
variables on the predictions of the model (Supplemental Methods). Both Feature Importance Scores and SHAP
values add interpretability to the model framework and reveal pertinent clinical variables associated with ABI. All
statistical analyses were performed using R Studio (R 4.1.2, www.r-project.org) and Python.

Results

VA-ECMO (non-ECPR)
Of 35,855 VA-ECMO (non-ECPR) patients, 2,769 (8%) had ABI (Supplemental Table 2, Fig. 2). The median age was
57.8 years (interquartile range, IQR:45.9–66.4) and 66% (n = 23,542) were male. The median duration of ECMO
support was 4.3 days (IQR:2-7.7).

Model Performance
Using the leave-one-out-cross-validation (LOOCV) 10-fold approach, for predicting ABI in VA-ECMO patients, the
model achieved an AUC-ROC of 0.67 (Fig. 3A). The accuracy of the model was 83%. The true positive rate, true
negative rate, false positive rate, and false negative rate were 33%, 88%, 12%, and 67%, respectively (Table 1). The
PPV and NPV were 18% and 94%, respectively.

Table 1
Model performance in venoarterial extracorporeal membrane oxygenation patients for predicting acute brain

injury, central nervous system ischemia, and intracranial hemorrhage.

  AUC-
ROC

Acc TPR TNR FPR FNR PPV NPV Precision Recall F1 Brier
Score

ABI 0.67 83% 33% 88% 12% 67% 18% 94% 0.18 0.34 0.24 0.175

CNS
Ischemia

0.67 86% 33% 88% 12% 67% 11% 97% 0.11 0.34 0.16 0.21

ICH 0.62 97% 5% 99% 1% 95% 8% 98% 0.10 0.06 0.08 0.095

AUC-ROC: area under the receiver-operating characteristic curve. Acc: Accuracy. TPR: True Positive Rate. TNR:
True Negative Rate. FPR: False Positive Rate. FNR: False Negative Rate. PPV: Positive Predictive Value. NPV:
Negative Predictive Value. ABI: acute brain injury. CNS: central nervous system. ICH: intracranial hemorrhage.

For predicting CNS ischemia, the model achieved an AUC-ROC of 0.67 (Fig. 3B). The accuracy of the model was
86%. The true positive rate, true negative rate, false positive rate, and false negative rate were 33%, 88%, 12%, and
67%, respectively. The PPV and NPV were 11% and 97%, respectively.

For ICH, the model achieved an AUC-ROC of 0.62 (Fig. 3C). The accuracy of the model was 97%. The true positive
rate, true negative rate, false positive rate, and false negative rate were 5%, 99%, 1%, and 95%, respectively. The
PPV and NPV were 8% and 98%, respectively.

Feature Importance
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We identi�ed the top 3 most important variables per Feature Importance Scores and depict the remaining
variables (Fig. 4A, Supplemental Fig. 1A, Supplemental Table 3). The top 3 variables in predicting ABI were
duration of ECMO support, ECMO pump �ow rate at 24 hours, and on-ECMO PaO2.

The median ECMO duration was higher in patients with ABI versus patients without ABI (4.8 versus 4.3 days, p < 
0.001). The median ECMO pump �ow rate at 24 hours was higher in patients with ABI versus patients without ABI
(4 versus 3.95 liters per minute, p < 0.001). The median on-ECMO PaO2 was higher in patients with ABI versus
patients without ABI (162 versus 141 mmHg, p < 0.001). The top 3 variables in predicting CNS ischemia were
ECMO pump �ow rate at 24 hours, pre-ECMO cardiac arrest, and conventional ventilation at 24 hours of ECMO
support (Fig. 4B, Supplemental Fig. 1B, Supplemental Table 4). The median ECMO pump �ow rate at 24 hours
was higher in patients with CNS ischemia versus patients without CNS ischemia (4 versus 3.95 liters per minute, p 
< 0.001). The prevalence of CNS ischemia in patients with pre-ECMO cardiac arrest was higher than patients
without cardiac arrest (5.8% versus 3.3%, p < 0.001). The prevalence of CNS ischemia in patients with
conventional venting at 24 hours of ECMO support was higher than patients without conventional venting at 24
hours of ECMO support (8.6% versus 2.7%, p < 0.001). The top 3 variables in predicting ICH were duration of ECMO
support, ECMO pump �ow rate at 4 hours, and on-ECMO PaO2 (Fig. 4C, Supplemental Fig. 1C, Supplemental
Table 5). The median ECMO duration was higher in patients with ICH versus patients without ICH (6 versus 4.3
days, p < 0.001). The median ECMO pump �ow rate at 4 hours was higher in patients with ICH versus patients
without ICH (3.98 versus 3.82 liters per minute, p < 0.001). The median on-ECMO PaO2 was similar between
patients with ICH versus patients without ICH (151 versus 142 mmHg, p = 0.27).

ECPR
Of 10,775 ECPR patients, 1,787 (16.5%) had ABI (Fig. 1, Supplemental Table 6). The median age of the ECPR
cohort was 57.1 years (IQR:45.5–65.9) and 68% (n = 7,388) were male. The median duration of ECMO support
was 2.63 days (IQR:0.88–5.33).

Model Performance
For predicting ABI in ECPR patients, the model achieved an AUC-ROC of 0.72 (Fig. 3D). The accuracy of the model
was 69%. The true positive rate, true negative rate, false positive rate, and false negative rate were 61%, 70%, 30%,
and 39%, respectively (Table 2). The PPV and NPV were 29% and 90%, respectively.

Table 2
Model performance in extracorporeal cardiopulmonary resuscitation patients for predicting acute brain injury,

central nervous system ischemia, and intracranial hemorrhage.

  AUC-
ROC

Acc TPR TNR FPR FNR PPV NPV Precision Recall F1 Brier
Score

ABI 0.72 69% 61% 70% 30% 39% 29% 90% 0.28 0.61 0.39 0.14

CNS
Ischemia

0.73 81% 41% 85% 15% 59% 18% 95% 0.18 0.41 0.25 0.14

ICH 0.69 88% 28% 89% 11% 72% 7% 98% 0.07 0.28 0.11 0.25

AUC-ROC: area under the receiver-operating characteristic curve. Acc: Accuracy. TPR: True Positive Rate. TNR:
True Negative Rate. FPR: False Positive Rate. FNR: False Negative Rate. PPV: Positive Predictive Value. NPV:
Negative Predictive Value. ABI: acute brain injury. CNS: central nervous system. ICH: intracranial hemorrhage.
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For predicting CNS ischemia, the model achieved an AUC-ROC of 0.73 (Fig. 3E). The accuracy of the model was
81%. The true positive rate, true negative rate, false positive rate, and false negative rate were 41%, 85%, 15%, and
59%, respectively. The PPV and NPV were 18% and 95%, respectively.

For ICH, the model achieved an AUC-ROC of 0.69 (Fig. 3F). The accuracy of the model was 88%. The true positive
rate, true negative rate, false positive rate, and false negative rate were 28%, 89%, 11%, and 72%, respectively. The
PPV and NPV were 7% and 98%, respectively.

Feature Importance
The top 3 variables for predicting ABI were duration of ECMO support, age, and ECMO pump �ow rates at 24 hours
and further details are depicted in the Supplement (Supplemental Fig. 2, Supplemental Fig. 3, Supplemental
Tables 7–9, Supplemental Results).

Discussion
This is the �rst ML study leveraging a large international database to predict ABI in ECMO patients, conveying
novelty and generalizability of our study’s results. In 35,855 VA-ECMO (non-ECPR) and 10,775 ECPR patients, ML
predicted ABI during ECMO support with an AUC-ROC of 0.67 and 0.70 in VA-ECMO (non-ECPR) and ECPR
patients, respectively, while identifying risk factors for their occurrence.

VA-ECMO vs. Venovenous (VV)-ECMO risk factors
ML uniquely identi�ed longer duration of ECMO support, higher ECMO pump �ow rate at 24 hours of ECMO
support, and higher on-ECMO 24-hour PaO2 as the top 3 most important variables associated with ABI. In another
study applying ML to predict ABI in VV-ECMO, (22)ECMO duration was also a top 3 most important variable for
ABI; however, a longer duration of ECMO support was associated with lower risk of ABI in VV-ECMO patients while
it was associated with a higher risk in VA-ECMO. As VV-ECMO patients have been shown to be cannulated longer
than VA-ECMO patients,(23–25) the longer ECMO duration and lower risk of ABI associated may be attributed to
the withdrawal of life-sustaining therapy for severely sick patients.(26, 27) Accordingly, this may have created a
selection bias for patients who did undergo ABI and survived on ECMO support for longer. Furthermore, a higher
ECMO pump �ow rate and likely corresponding hemolysis(28) was uniquely important for ABI in VA-ECMO and
ECPR, but not in VV-ECMO. This �nding may re�ect the different hemodynamic/physiological states(28, 29) and
use/disuse of an aortic cannula(30) in VA- versus VV-ECMO populations and warrants further study. Although
cross-sectionally the ECMO pump �ow rates were small and may not be clinically meaningful, over the duration of
ECMO support these differences may accrue to substantial differences. While pre-ECMO cardiac arrest is a known
risk factor for CNS ischemia in ECPR patients,(2, 31) likely related to reperfusion injury and associated reactive
oxygen species formation,(31, 32) we also note that this factor was highly important in VV-ECMO patients(33)
which has not been previously reported. These comparisons suggest there are similar underlying but overall
divergent risk factors between these populations, which necessitates further investigation with prospective
observational studies. Finally, although PaCO2 and PP have been previously shown to be important factors for ABI
in regression analyses using the ELSO Registry,(4, 6) they were not in the top 3 most important variables in ML for
any population but remained within the top 20.

Machine learning methodologies
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We chose tree-based ML algorithms to predict ABI, which are becoming more commonly used in healthcare
studies(34) as they provide an effective way to consider all different possible outcomes in a model. Furthermore,
these tree-based ML models demonstrate high power, good accuracy, and provide interpretability to the models.
(35) The primary difference between using Random Forest vs. gradient boosting tree methods is that Random
Forest trees are constructed in an independent fashion while gradient boosting methods are created sequentially.
Accordingly, Random Forest can determine their outputs without restriction of order while gradient boosting
methods like XGBoost are restricted in a more �xed manner. There are also key differences within boosting
methods: CatBoost may be most optimal for categorical data and can generate output more quickly than XGBoost
or LightGBM. LightGBM demonstrates better accuracy and speed than XGBoost, but XGBoost is the more
established ML algorithm, perhaps making it a very reliable ML tree-based method. Nevertheless, despite
implementing these 4 powerful and innovative methods with oversampling to enhance statistical power, ML could
still not accurately predict ABI in the ELSO Registry. This �nding may suggest that the ELSO Registry does not
capture causative variables for ABI over the entire duration of ECMO support which are needed to fully glean the
insights and advantages of ML and ultimately identify modi�able risk factors for ABI. Finally, we note that while
ML did not predict ABI with high accuracy, it did produce a strong NPV (94% and 90% for ABI in VA-ECMO and
ECPR, respectively), suggesting our models’ true utility may lie in its high sensitivity and capability to rule out
patients who truly did not have ABI.

Lack of standardized neurological monitoring
Given the relatively mediocre performance in predicting ABI and its subtypes in both cohorts, we reveal certain
limitations using a heterogenous, large dataset such as the ELSO Registry to predict ABI with ML. Speci�cally,
unlike the institutional protocol at Johns Hopkins Hospital which uses standardized neurological monitoring with
proven e�cacy,(3) the protocols used to determine ABI across ECMO centers are neither standardized nor
adjudicated/validated, and thus vary considerably. Accordingly, we only observed a 7.7% prevalence of ABI in VA-
ECMO patients and 16.5% prevalence of ABI in ECPR patients within the ELSO Registry, which is considerably less
than the prevalence of 33% at an experienced tertiary care ECMO center.(3) Therefore, this study calls for more
sensitive and accurate detection of ABI and more granular collection of variables across ECMO centers. ABI can
precede mortality and therefore identifying risk factors for ABI can help clinicians mitigate their occurrence and
their associated mortality risk. In fact, a single-center study of 106 VA-ECMO and 68 VV-ECMO pediatric patients
using ML to predict CNS ischemia and ICH showed a superior AUC-ROC (0.76) than ours with the ELSO Registry
(0.67).(36) This result may not be surprising given the institution’s rigorous advanced neuroimaging technique to
determine ABI and adjudication system by multiple clinicians. Accordingly, their prevalence of ABI (51% in VA/VV-
ECMO mixed population) was much higher than ours with the ELSO Registry (7.7% in VA-ECMO and 16.5% in
ECPR). Overall, an ELSO Registry addendum for neurological monitoring and imaging protocols may improve
performance for ML to predict ABI.

Limitations
The primary limitation of our analysis was the lack of standardized neurological monitoring protocols across
ECMO centers and lack of ABI adjudication in the ELSO Registry. Correspondingly, we observed underdiagnoses of
ABI. Likely due to low prevalence of ABI and lack of granularity in variables in the ELSO Registry, predicting this
outcome using ML was challenging and resulted in suboptimal performance. Furthermore, the ELSO Registry
lacks granularity with laboratory measurements as ABGs are only collected at a singular time point instead of
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multiple times throughout the ECMO run and were not collected at the same exact time point at each center.
Finally, as this was a retrospective study, only associations could be determined.

Conclusions
Using the largest database of ECMO patients globally, we present the �rst study to predict neurological outcomes
on su�ciently powered international ECMO patient cohorts. Machine learning identi�ed ECMO duration and higher
pump �ow rates as the most important risk factors for ABI in both VA-ECMO and ECPR cohorts. Overall,
performance of ML models to predict ABI in VA-ECMO and ECPR patients was suboptimal likely due to lack of
standardization of neuromonitoring protocols and data granularity in the ELSO Registry. This �nding suggests
that the detection and sensitivity rates for capturing ABI in ECMO patients across ECMO centers worldwide is
substandard. Accordingly, standardized neurological monitoring and imaging protocols are urgently needed.

Abbreviations
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ABG arterial blood gas

ABI acute brain injury

AUC-ROC area under the receiver-operating characteristic curve

BMI body mass index

CI con�dence interval

CNS central nervous system

DBP diastolic blood pressure

DPAP diastolic pulmonary arterial pressure

ECMO extracorporeal membrane oxygenation

ELSO Extracorporeal Life Support Organization

ICH intracranial hemorrhage

IQR interquartile range

LOOCV leave-one-out-cross-validation

ML machine learning

MPAP mean positive airway pressure

PaCO2 partial pressure of carbon dioxide

PaO2 partial pressure of oxygen

PCWP positive capillary wedge pressure

PEEP positive end-expiratory pressure

PIP positive inspiratory pressure

PP pulse pressure

SBP systolic blood pressure

SD standard deviation

SHAP Shapley Additive Explanations

SPAP systolic pulmonary arterial pressure

SvO2 venous oxygen saturation

VA venoarterial 

VV venovenous
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Figures

Figure 1

All 65 variables incorporated into our machine learning models including laboratory values, ECMO settings,
demographics, other variables, and our primary outcome (acute brain injury). BP: blood pressure. CI: cardiac index.
DBP: diastolic blood pressure. DPAP: diastolic pulmonary arterial pressure. ECMO: extracorporeal membrane
oxygenation. EEG: electroencephalogram. FiO2: fraction of inspired oxygen. HFV: high frequency ventilator. MPAP:
mean pulmonary arterial pressure. PaO2: partial pressure of oxygen. PaCO2: partial pressure of carbon dioxide.
PCWP: pulmonary capillary wedge pressure. PEEP: positive-end expiratory pressure. PIP: peak inspiratory
pressure. SPAP: systolic pulmonary arterial pressure. SaO2: arterial blood gas oxygen saturation. SpO2: peripheral
oxygen saturation. SvO2: mixed venous oxygen saturation.
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Figure 2

Flowchart of study cohort (VA-ECMO and ECPR patients) from the ELSO Registry in 2009-2020. ECMO =
extracorporeal membrane oxygenation, VA = venoarterial, VV = venovenous, Conversion = VA -> VV or VV -> VA,
ECPR = extracorporeal cardiopulmonary resuscitation, VVA = venovenoarterial, Other = mode not de�ned, VP =
venopulmonary
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Figure 3

Receiver-operating characteristic curves for predicting A) acute brain injury (ABI), B) central nervous system (CNS)
ischemia, and C) intracranial hemorrhage (ICH) in venoarterial extracorporeal membrane oxygenation (VA-ECMO)
patients and for predicting D) ABI, E) CNS ischemia, and F) ICH in extracorporeal cardiopulmonary resuscitation
(ECPR) patients.
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Figure 4

Feature Importance Scores for A) acute brain injury, B) central nervous system ischemia, and C) intracranial
hemorrhage in VA-ECMO (non-ECPR) patients. AP: arterial pressure. BP: blood pressure. CI: cardiac index. DBP:
diastolic blood pressure. DPAP: diastolic pulmonary arterial pressure. ECMO: extracorporeal membrane
oxygenation. EEG: electroencephalogram. FiO2: fraction of inspired oxygen. HFV: high frequency ventilator. MPAP:
mean pulmonary arterial pressure. PaO2: partial pressure of oxygen. PaCO2: partial pressure of carbon dioxide.
PCWP: pulmonary capillary wedge pressure. PEEP: positive-end expiratory pressure. PIP: peak inspiratory
pressure. SPAP: systolic pulmonary arterial pressure. SaO2: arterial blood gas oxygen saturation. SpO2: peripheral
oxygen saturation. SvO2: mixed venous oxygen saturation. Vent: ventilator.
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