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A B S T R A C T   

Background: The electrocardiogram (ECG) is one of the most accessible and comprehensive diagnostic tools used 
to assess cardiac patients at the first point of contact. Despite advances in computerized interpretation of the 
electrocardiogram (CIE), its accuracy remains inferior to physicians. This study evaluated the diagnostic per-
formance of an artificial intelligence (AI)-powered ECG system and compared its performance to current state-of- 
the-art CIE. 
Methods: An AI-powered system consisting of 6 deep neural networks (DNN) was trained on standard 12‑lead 
ECGs to detect 20 essential diagnostic patterns (grouped into 6 categories: rhythm, acute coronary syndrome 
(ACS), conduction abnormalities, ectopy, chamber enlargement and axis). An independent test set of ECGs with 
diagnostic consensus of two expert cardiologists was used as a reference standard. AI system performance was 
compared to current state-of-the-art CIE. The key metrics used to compare performances were sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 score. 
Results: A total of 932,711 standard 12‑lead ECGs from 173,949 patients were used for AI system development. 
The independent test set pooled 11,932 annotated ECG labels. In all 6 diagnostic categories, the DNNs achieved 
high F1 scores: Rhythm 0.957, ACS 0.925, Conduction abnormalities 0.893, Ectopy 0.966, Chamber enlargement 
0.972, and Axis 0.897. The diagnostic performance of DNNs surpassed state-of-the-art CIE for the 13 out of 20 
essential diagnostic patterns and was non-inferior for the remaining individual diagnoses. 
Conclusions: Our results demonstrate the AI-powered ECG model's ability to accurately identify electrocardio-
graphic abnormalities from the 12‑lead ECG, highlighting its potential as a clinical tool for healthcare 
professionals.   

Introduction 

The standard 12‑lead electrocardiogram (ECG) is a comprehensive 

diagnostic method readily available at the first point of contact, allowing 
for a rapid assessment of a wide spectrum of cardiac abnormalities. ECG 
interpretation is a comprehensive process that requires considerable 
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expertise and training. It has been shown that physicians at all training 
levels have deficiencies in ECG interpretation, even after educational 
interventions. An extensive meta-analysis reports a median accuracy for 
ECG interpretation of 54% across all healthcare professional training 
levels, with non-cardiologist practicing physicians achieving 68.5% ac-
curacy [1]. 

Computerized interpretation of the electrocardiogram (CIE) was 
introduced to improve ECG interpretation accuracy and reduce inter-
rater variability. Despite improvements in diagnostic performance over 
time, traditional CIE often falls short in providing accurate in-
terpretations, as evidenced by reported accuracy of 54% for interpreting 
non-sinus rhythms and error rates of 40.7% and 75.0% for diagnosing 
acute coronary syndrome or higher degree AV block, respectively [2–4]. 
Hence, CIE is viewed with skepticism and physicians are advised against 
relying on CIE to drive clinical decision-making [5]. It has been shown 
that the over-reading physician's interpretation is significantly influ-
enced by CIE and errors are often overlooked [6–9], advocating more 
accurate ECG interpretation support. 

Artificial intelligence (AI) developed using large databanks of ECG 
data showed promising results in landmark studies [10–13]. Although, 
their interpretation remained limited to a select number of supported 
ECG diagnoses and were not validated on adequate sample sizes, pre-
venting wide-scale adoption of AI-powered ECG interpretation. We 
pursued the development of an AI-powered system that provides accu-
rate detection of major ECG abnormalities addressing the limitations of 
traditional CIE. We hypothesized that this AI system will surpass the 
performance of CIE evaluated in a large external dataset. 

Methods 

Study design 

This retrospective study followed three key steps: (1) development of 
an AI-powered system composed of multiple deep neural networks 
(DNNs) detecting essential diagnostic patterns on 12‑lead ECGs (“AI 
system development”); (2) evaluation of the AI system performance on a 
separate, independent dataset of ECGs (“test set”); (3) comparison of the 
AI system to a state-of-the-art CIE algorithm. The study was approved by 
the local ethics committee for human research and complied with the 
Declaration of Helsinki. 

Model development data 

A total of 1,205,370 ECGs acquired between 01/1/2004 to 31/12/ 
2020 were extracted from the Cardiovascular Center Aalst data vault. 
After filtering out 270,713 ECGs (patients younger than 18 years at the 
time of acquisition, raw files missing data, invalid duration measure-
ments), the refined ECG data set (934,657 ECGs) was used to sample the 
model derivation data set and the test set (Fig. 1). Raw waveform data 
from standard 10 s 12‑lead ECGs recorded at a sampling rate of 500 Hz 
(GE Healthcare, Milwaukee, WI, USA) was extracted. There was no 
preprocessing performed on the waveform data (no additional filtering, 
resampling or other techniques). For the model derivation data set, the 
original diagnostic statements (automatically generated by the Mar-
quette 12SL algorithm [version 2005], GE Healthcare, Milwaukee, WI, 

Fig. 1. PRISMA Flowchart of the data set creation.  
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USA) were mapped into 20 diagnostic patterns (Appendix 1, Supplemental 
Table 1). The term “ECG label” refers to a diagnostic label assigned to 
any given ECG, either positive (indicating the presence of a specific 
pattern), or negative (indicating its absence). For the ECG duration 
measurements model, the standard ECG measurements automatically 
calculated by the Marquette 12SL (heart rate, P-wave duration, PR- 
interval, QRS, duration, and QT interval) were used for model 
development. 

Primary and secondary outcomes 

The primary outcome was the ability of an AI system to accurately 
detect 20 essential diagnostic patterns and standard ECG measurements 
on 12‑lead ECGs included in the test set. The AI system performance on 
each diagnostic pattern was assessed using a majority vote by two expert 
cardiologists as the reference standard. ECG measurements evaluation 
followed the International Electrotechnical Commission (IEC) 60,601–2- 
25:2015 standard, which mandates reporting measurement results on 
expert-annotated ECGs from the Common Standards for Electrocardi-
ography (CSE) database [14,15]. Secondary outcomes included the 
comparison of AI system performance to a state-of-the-art CIE (Mar-
quette 12SL algorithm [version 2005], GE Healthcare) on the subset of 
1946 (47.8%) of ECGs in the test set with available Marquette 12SL 
diagnostic statements. 

Model development 

The AI system consists of two components: one detecting the diag-
nostic patterns (diagnostic component) and another for the ECG dura-
tion measurements (measurements component). Our approach for ECG 
diagnostics leverages the power of multiple DNNs. A random 5 s 
segment was chosen for each lead from the 10s 12‑lead raw ECG 
(sampled at 500 Hz) as input for each of the 6 DNNs. For DNN testing, 
the first 5 s for limb leads and the last 5 s for precordial leads of the 
standard 6 × 2 ECG format were used. For the DNN model development, 
a randomly selected 5 s segment from the 10s 12‑lead raw ECG, sampled 
at 500 Hz, was used for each lead. For model testing, the first 5 s for limb 
leads and the last 5 s for precordial leads were used, mirroring the 
standard 6 × 2 ECG format. This method was intentionally chosen to 
provide an equivalent informational basis for both the DNN and the 
cardiologists annotating the test set. The DNN architecture comprises 
two key components: feature extraction and classification (Supplemental 
Fig. 1). The feature extraction component consists of 15 Convolutional 
layers, designed to extract features from leads. The second component, 
classification, combines all extracted features and processes them 
through 3 fully connected layers, interspersed with dropouts. Analysis of 
each lead and integration of the knowledge gained mimics the analytical 
approach of human experts to make a final diagnosis. The network 
utilizes the Adam optimizer, ReLU activation functions, and Dropout for 
regularization. The training phase was terminated once the model's 
performance on the tuning dataset ceased to improve, also known as 
early stopping. 

Test set creation 

For model testing, an independent test set was derived by collecting 
ECGs from multiple sources to ensure robust performance evaluation 
and demonstrate generalizability. In addition to ECGs sampled from the 
Cardiovascular Center Aalst ECG data vault, external data sources 
included the CODE-15% database (Telehealth Network of Minas Gerais), 
PTB-XL (Physikalisch Technische Bundesanstalt), Shaoxing database 
(Shaoxing People's Hospital and Ningbo First Hospital), PNC2020 
(PhysioNet/Computing in Cardiology Challenge 2020), CPSC2018 
(China Physiological Signal Challenge 2018). A minimum requirement 
of 50 positive and 50 negative ECG labels for each diagnostic pattern in 
our test set was set, taking into consideration the test set sizes used in 

previous studies for guidance [10–13]. A major vote of two expert car-
diologists with extensive experience in electrocardiography was 
considered the reference standard. If the two expert cardiologists 
agreed, the shared diagnosis was considered as the reference standard. 
In case of disagreement, the ECGs were removed from the test set to 
ensure sufficient ECG quality for interpretation. There was no patient 
overlap between the model derivation data set and the test set. An 
expanded methodology for the test set creation is available in Appendix 
2 of the Supplementary files. 

Statistical analysis 

Metrics used for statistical evaluation of diagnostic performance 
include sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and F1-score, all with 95% confidence intervals 
(CI). For the DNN, the CI was derived using the Wald 95% CI method 
[16]. Performance metrics are presented as average values (95% CI), 
grouped per diagnostic category. The benchmark aimed to determine 
whether the point average of the DNN is above, below or within the CI of 
the comparator. All code was written in Python programming language 
and executed within the environment of AWS Sagemaker, either as a 
Processing job or a Development job. The development was conducted 
on a g4dn.4xlarge machine, equipped with 64 GiB of memory and 225 
GB NVMe SSD storage. Analysis and visualization of the results were 
performed in Python using the standard data-science libraries Pandas, 
NumPy, Scipy, Scikit-Learn, Matplotlib, Seaborn libraries. 

Results 

Study population 

A total of 932,711 ECGs from 173,949 unique patients were used for 
model development (model derivation set) (Fig. 1). The test set con-
sisted of 4122 unique ECGs with 11,932 annotated ECG labels (1946 

Table 1 
Patient demographics of the model derivation data set and testing data set.  

Parameter Model derivation 
data set 

Test set 

Counts   
Number of ECGs, n 932,711 4122 
Number of unique patients, n 173,949 3593 

Age group   
≤25, n (%) 14,909 (1.6%) 149 (3.6%) 
26–40, n (%) 39,246 (4.2%) 353 (8.6%) 
41–60, n (%) 209,443 (22.5%) 948 

(23.0%) 
61–80, n (%) 458,436 (49.2%) 1912 

(46.4%) 
≥81, n (%) 154,499 (16.6%) 709 

(17.2%) 
Missing info, n (%) 56,178 (6.0%) 51 (1.2%) 

Sex   
Male, n (%) 487,721 (52.3%) 2342 

(56.8%) 
Female, n (%) 352,948 (37.8%) 1774 

(43.0%) 
Missing info, n (%) 92,042 (9.9%) 6 (0.1%) 

Data origin   
Cardiovascular Center Aalst ECG data 
vault, n (%)* 

932,711 (100%) 1946 
(47.2%) 

CODE-15%, n (%) 0 (0%) 1067 
(25.9%) 

Shaoxing, n (%) 0 (0%) 551 
(13.4%) 

CPSC2018, n (%) 0 (0%) 206 (5.0%) 
PTB-XL, n (%) 0 (0%) 180 (4.4%) 
PNC2020, n (%) 0 (0%) 172 (4.2%) 

ECG, electrocardiogram; n, number. 
a State-of-the-art CIE (GE Marquette 12SL) diagnostic statements available. 
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ECGs [47.8%] from the Cardiovascular Center Aalst cohort enriched 
with 2176 ECGs [52.8%] from external sources). Study population de-
mographics are summarized in Table 1. 

DNN model performance 

Results of diagnostic performance on the test set are provided in 
Table 2 and Fig. 2. In all 6 diagnostic categories, the DNNs achieved high 
F1 scores: Rhythm 0.957, acute coronary syndromes (ACS) 0.925, 
Conduction abnormalities 0.893, Ectopy 0.966, Chamber enlargement 
0.972, and Axis 0.897. The DNN performance yielded high F1 scores for 
each individual rhythm pattern and the ability of the DNN to identify 
atrial fibrillation achieved nearly perfect performance (Fig. 3, panel A), 
as evidenced by the sensitivity 0.948 (95% CI 0.935–0.961), specificity 
0.998 (95% CI 0.995–1.000), PPV 0.989 (95% CI 0.983–0.995), NPV 
0.990 (95% CI 0.984–0.996), and F1 score 0.968 (95% CI 0.958–0.978). 
In the detection of ST-elevation ACS, the DNN achieved sensitivity 0.994 

(95% CI 0.986–1.000), specificity 0.926 (95% CI 0.900–0.952), PPV 
0.904 (95% CI 0.875–0.934), NPV 0.995 (95% CI 0.989–1.000), and F1 
score 0.947 (95% CI 0.925–0.969) (Fig. 3, Panel B). Results on the 
external subset of the testing dataset are comparable, indicating that the 
DNN generalizes well beyond the Aalst ECG data cohort (Supplemental 
Table 2). 

For the ECG measurements, average differences (with their accept-
able thresholds) for P wave duration, PR interval, QRS duration, QT 
interval, and RR interval were 9.2 ms (±10 ms), − 1.1 ms (±10 ms), 3.0 
ms (±10 ms), − 4.1 ms (±25 ms) and − 0.3 ms (±25 ms), respectively. 
The automated measurements passed all criteria proposed by the CSE 
standards. Table 3 provides the results of automated measurements 
performed on expert-annotated ECGs from the CSE database. 

Benchmarking 

Comparison to a current state-of-the-art CIE was performed on 1946 

Table 2 
Full diagnostic performance of the DNN on the full annotated test set (N = 4122 ECGs with 11,932 ECG labels).  

Diagnostic pattern Positive 
samples 

Negative 
samples 

Sensitivity Specificity PPV NPV F1 score 

Rhythm   0.957 
(0.952–0.962) 

0.989 
(0.987–0.992) 

0.957 
(0.952–0.962) 

0.989 
(0.987–0.992) 

0.957 
(0.952–0.962) 

Sinus rhythm 389 772 0.990 
(0.984–0.996) 

0.969 
(0.959–0.979) 

0.941 
(0.928–0.955) 

0.995 
(0.990–0.999) 

0.965 
(0.954–0.975) 

Paced rhythm 275 886 0.978 
(0.970–0.987) 

0.986 
(0.980–0.993) 

0.957 
(0.946–0.969) 

0.993 
(0.988–0.998) 

0.968 
(0.957–0.978) 

Atrial fibrillation 192 969 0.948 
(0.935–0.961) 

0.998 
(0.995–1.000) 

0.989 
(0.983–0.995) 

0.990 
(0.984–0.996) 

0.968 
(0.958–0.978) 

Atrial flutter 159 1002 0.969 
(0.959–0.979) 

0.995 
(0.991–0.999) 

0.969 
(0.959–0.979) 

0.995 
(0.991–0.999) 

0.969 
(0.959–0.979) 

Other rhythm 146 1015 0.829 
(0.807–0.850) 

0.993 
(0.988–0.998) 

0.945 
(0.932–0.958) 

0.976 
(0.967–0.985) 

0.883 
(0.865–0.902) 

ACS   0.930 
(0.912–0.948) 

0.957 
(0.943–0.971) 

0.920 
(0.901–0.939) 

0.963 
(0.949–0.976) 

0.925 
(0.907–0.943) 

Suspected ST-elevation ACS 
(STEMI) 

162 230 0.994 
(0.986–1.000) 

0.926 
(0.900–0.952) 

0.904 
(0.875–0.934) 

0.995 
(0.989–1.000) 

0.947 
(0.925–0.969) 

Suspected Non-ST-elevation ACS 
(NSTEMI) 

110 282 0.836 
(0.800–0.873) 

0.982 
(0.969–0.995) 

0.948 
(0.927–0.970) 

0.939 
(0.915–0.963) 

0.889 
(0.858–0.920) 

Conduction abnormalities   0.864 
(0.852–0.876) 

0.968 
(0.962–0.974) 

0.925 
(0.916–0.934) 

0.939 
(0.931–0.948) 

0.893 
(0.882–0.904) 

Left bundle branch block 189 349 0.947 
(0.928–0.966) 

0.994 
(0.988–1.000) 

0.989 
(0.980–0.998) 

0.972 
(0.958–0.986) 

0.968 
(0.953–0.983) 

Right bundle branch block 178 360 0.994 
(0.988–1.000) 

0.942 
(0.922–0.961) 

0.894 
(0.868–0.920) 

0.997 
(0.992–1.000) 

0.941 
(0.922–0.961) 

Left anterior fascicular block 155 321 0.910 
(0.884–0.935) 

0.975 
(0.961–0.989) 

0.946 
(0.926–0.967) 

0.957 
(0.939–0.975) 

0.928 
(0.904–0.951) 

Left posterior fascicular block 162 314 0.821 
(0.787–0.855) 

0.978 
(0.964–0.991) 

0.950 
(0.930–0.970) 

0.914 
(0.888–0.939) 

0.881 
(0.852–0.910) 

2nd degree AV block Mobitz type 
I (Wenckebach) 

87 417 0.747 
(0.709–0.785) 

0.971 
(0.957–0.986) 

0.844 
(0.812–0.876) 

0.948 
(0.929–0.968) 

0.793 
(0.757–0.828) 

Higher degree AV block 185 319 0.708 
(0.668–0.748) 

0.947 
(0.927–0.966) 

0.885 
(0.857–0.913) 

0.848 
(0.817–0.880) 

0.787 
(0.751–0.823) 

Ectopy 184 184 0.940 
(0.916–0.964) 

0.995 
(0.987–1.000) 

0.994 
(0.987–1.000) 

0.943 
(0.920–0.967) 

0.966 
(0.948–0.985) 

Chamber enlargement   0.991 
(0.984–0.998) 

0.928 
(0.909–0.946) 

0.954 
(0.939–0.969) 

0.985 
(0.977–0.994) 

0.972 
(0.960–0.984) 

Suspected atrial enlargement 270 133 0.996 
(0.990–1.000) 

0.932 
(0.908–0.957) 

0.968 
(0.950–0.985) 

0.992 
(0.983–1.000) 

0.982 
(0.969–0.995) 

Suspected ventricular 
hypertrophy 

171 157 0.982 
(0.968–0.997) 

0.924 
(0.895–0.952) 

0.933 
(0.906–0.960) 

0.980 
(0.964–0.995) 

0.957 
(0.935–0.979) 

Axis   0.897 
(0.880–0.914) 

0.966 
(0.956–0.976) 

0.897 
(0.880–0.914) 

0.966 
(0.956–0.976) 

0.897 
(0.880–0.914) 

Normal axis 54 248 0.990 
(0.979–1.000) 

0.864 
(0.826–0.903) 

0.791 
(0.745–0.837) 

0.994 
(0.986–1.000) 

0.879 
(0.843–0.916) 

Left axis deviation 91 211 0.747 
(0.698–0.796) 

0.995 
(0.988–1.000) 

0.986 
(0.972–0.999) 

0.901 
(0.868–0.935) 

0.850 
(0.810–0.890) 

Right axis deviation 54 248 0.907 
(0.875–0.940) 

0.992 
(0.982–1.000) 

0.961 
(0.939–0.983) 

0.980 
(0.964–0.996) 

0.933 
(0.905–0.961) 

Extreme axis deviation 103 199 0.963 
(0.942–0.984) 

0.996 
(0.989–1.000) 

0.981 
(0.966–0.996) 

0.992 
(0.982–1.000) 

0.972 
(0.953–0.991) 

ACS, acute coronary syndrome; AV, atrioventricular; ECG, electrocardiogram; NSTEMI, Non-ST-elevation myocardial infarction; STEMI, ST-elevation myocardial 
infarction. 

R. Herman et al.                                                                                                                                                                                                                                



Journal of Electrocardiology 82 (2024) 147–154

151

ECGs (47.8% of entire test set) with available Marquette 12SL di-
agnostics statements. In this comparison, the DNNs achieved signifi-
cantly higher F1 scores than the CIE for 13 out of the 20 diagnostic 
patterns (Table 4). For the overall rhythm assessment, the F1 score of the 
DNNs was superior to the CIE (0.954 vs. 0.837, P < 0.05), surpassing the 
CIE for each individual rhythm pattern. Compared to the CIE, the DNN 
reduced false negatives by 41.7% and increased true positives by 5.7% 
for the diagnosis of AF. Likewise, the DNN reduced false negatives to 
0 and increased true positives by 19.2% for the diagnosis of STEMI 
compared to the CIE. For the diagnosis of conduction abnormalities, 
DNN performance was significantly greater compared to the CIE (F1 
score 0.895 vs. 0.759, P < 0.05), with the exception of LBBB (equal 
performance). In the three diagnostic patterns exhibiting the lowest CIE 
performance, namely LPFB, 2nd degree AV block Mobitz type I, and 
Higher degree AV block, the DNNs showcased a significant enhancement 
in F1-score performance (0.901 vs. 0.495; 0.768 vs. 0.690; 0.813 vs. 
0.526, respectively, P < 0.05 for all). The DNN was non-inferior 
compared to the CIE in the diagnostic class of ACS, ectopy, chamber 
enlargement and cardiac axis. For each individual diagnostic pattern, 
the AI system performance was either significantly better (P < 0.05) or 
non-inferior compared to the CIE, as adjudicated by the F1 scores. 

Discussion 

In this study, we present a novel AI-powered system composed of 
multiple DNNs detecting 20 essential ECG patterns and standard ECG 
measurements and compared its performance to state-of-the-art CIE. 
Trained on over 900,000 ECGs, the diagnostic performance of the AI 
system surpassed the state-of-the-art CIE for 13 out of 20 evaluated 
diagnostic patterns and was non-inferior for the remaining. These 
findings emphasize the potential of a DNN approach to substantially 

improve the accuracy of computerized ECG interpretation in clinical 
practice. 

ECG interpretation plays a critical role in the primary diagnosis and 
management of cardiac patients at the first point of contact. However, 
accuracy varies widely across all training levels of physicians and re-
mains suboptimal even after training intervention [1,17]. Current CIE 
approaches do not reliably address this, with incorrect interpretations in 
up to 33% cases, leading to unnecessary diagnostic testing and initiation 
of inappropriate treatment. Furthermore, existing AI approaches often 
do not support an adequate number of diagnostic patterns, omit quan-
tifying standard ECG measurements, lack validation in sizeable, external 
ECG datasets and do not report a comprehensive range of metrics 
potentially overestimating their effectiveness. [10–13]. 

Our present study bears several methodological strengths. First, we 
present a comprehensive AI system consisting of 6 DNNs detecting 20 
essential diagnostic patterns and 5 measurements. The F1 scores of the 
AI system for identifying the diagnostic patterns were excellent and all 
measurements passed the threshold requirements. Second, we have 
validated the performance of DNNs on a large, independent and diverse 
test data set of ECGs. Third, the AI system performance was compared to 
a current state-of-the-art (GE Marquette 12SL). The DNNs demonstrated 
robust performance in ECGs where the CIE achieved sub-optimal per-
formance. By effectively reducing false positives without increasing false 
negatives, implementation of AI-based ECG interpretation could greatly 
reduce the burden posed on cardiologists, who would only be required 
to provide their expertise for more intricate cases (Such as those where 
the numeric DNN output is close to the threshold for the diagnostic 
pattern). 

Fig. 2. Diagnostic performance comparison between DNN and GE Marquette 12SL. Bold values represent the highest performance for that diagnosis. 
ACS, acute coronary syndrome; DNN, deep neural network; GE, General Electric Marquette 12SL algorithm; NPV, negative predictive value; PPV, positive predictive 
value; Sens, sensitivity; Spec, specificity. 
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Clinical implications 

Our study has important clinical implications for ECG interpretation 
at the first point of patient contact. Fusing identified diagnostic patterns 
and measurements, the AI system can detect up to 38 clinically relevant 
diagnoses, 4 cardiac axes and 5 ECG measurements (Supplemental 
Table 1), thereby recommending comprehensive ECG interpretation. 
The AI system showed excellent performance especially in detecting AF, 
offering a valuable tool to improve early detection of AF in primary care. 
Likewise, this approach has the potential to accelerate management in 
emergency care through rapid pre-clinical diagnosis of STEMI. These 
benefits are relevant in the context of ever-increasing burden of car-
diovascular diseases on the healthcare system [18], providing the 

opportunity to improve timely and efficient referral with favorable 
impact on clinical outcomes. With the addition of new clinically vali-
dated data, DNNs have the potential to enhance continuously, 
improving their reliability. 

Limitations 

Following limitations should be acknowledged. One limitation of our 
study is the exclusion of ECGs from the dataset in instances of 
disagreement between the two expert cardiologists. While this approach 
was adopted to ensure sufficient ECG quality and maintain reliability of 
the dataset, this may have resulted in removal of more complex cases. 
Although the test dataset was enriched by external sources to ensure a 
diverse range of ECGs, further independent validation is needed to 
demonstrate generalizability of the AI system. A direct one-to-one 
comparison to existing AI models was not possible because of the un-
availability of their source code or dataset availability for external 
validation environment. The selection of diagnostic patterns in this 
study is not all-inclusive, some patterns such as signs of old infarction 
were not included in the scope of the AI system. While some ECGs had 
multiple abnormalities present, performance analysis of the AI system 
on these concomitant ECG findings would introduce a high degree of 
complexity which was beyond the intended scope of this study. Further 
research is needed to examine the prospective efficacy of the AI-powered 
system and healthcare professional adherence to AI-based 
interpretation. 

Conclusion 

The ability of an AI-powered ECG model to identify and learn fea-
tures and patterns from a large amount of ECG data has significantly 
attenuated the rate of misdiagnosis, exceeding current state-of-the-art 
CIE. As such, the algorithm's ability to accurately identify cardiac ab-
normalities from the 12‑lead ECG showcases its utility as a clinical 
decision-support tool for healthcare professionals. 

Tweet proposal 

AI-powered #ECG interpretation system accurately identifies cardiac 
abnormalities and outperforms a traditional state-of-the-art CIE in a 
large 12‑lead ECG dataset! This #AI diagnostic tool could be a valuable 
asset to healthcare professionals in the detecting cardiac disease at the 
first point of contact. @RobertHermanMD. 

Ethical committee approval 

The study was approved by the local ethics committee for human 
research and complied with the Declaration of Helsinki. 
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Fig. 3. Diagnostic performance of the DNN and GE Marquette 12SL for 
detection of atrial fibrillation and suspected ST-elevation acute coronary syn-
drome. Bold values represent the highest performance for that diagnosis. 
ACS, acute coronary syndrome; DNN, deep neural network; GE, General Electric 
Marquette 12SL algorithm; NPV, negative predictive value; PPV, positive pre-
dictive value. 

Table 3 
Results of ECG measurements on the CSE Multilead dataset.  

Measurement Number of ECGs Average diff. (ms) SD (ms) Acceptable average diff. (ms)* Acceptable SD (ms)* Adjudication 

P wave duration 92 9.2 7.3 ±10 15 Pass 
PR interval 92 − 1.1 7.4 ±10 10 Pass 
QRS duration 92 3.0 6.2 ±10 10 Pass 
QT interval 92 − 4.1 11.0 ±25 30 Pass 
RR interval 92 − 0.3 7.6 ±25 30 Pass 

CSE, Common Standards of Electrocardiography; SD, standard deviation. 
a Criteria proposed by the Common Standards of Electrocardiography (CSE). 
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Table 4 
Diagnostic performance of the DNN and the GE Marquette 12SL algorithm on the subset with available GE statements (N = 1946 ECGs; 47% of entire test set). Bold values denote a significantly better performance for that 
specific metric.   

Counts Sensitivity Specificity PPV NPV F1 score 

Diagnostic 
pattern 

Positive 
samples 

Negative 
samples 

DNN GE DNN GE DNN GE DNN GE DNN GE 

Rhythm   0.954 
(0.946–0.961) 

0.821 
(0.807–0.834) 

0.988 
(0.985–0.992) 

0.965 
(0.958–0.971) 

0.954 
(0.946–0.961) 

0.854 
(0.842–0.866) 

0.988 
(0.985–0.992) 

0.956 
(0.949–0.963) 

0.954 
(0.946–0.961) 

0.837 
(0.824–0.850) 

Sinus rhythm 147 500 0.980 
(0.969–0.990) 

0.993 
(0.987–1.000) 

0.976 
(0.964–0.988) 

0.928 
(0.908–0.948) 

0.923 
(0.903–0.944) 

0.802 
(0.772–0.833) 

0.994 
(0.988–1.000) 

0.998 
(0.994–1.000) 

0.950 
(0.934–0.967) 

0.888 
(0.863–0.912) 

Paced rhythm 242 405 0.979 
(0.968–0.990) 

0.702 
(0.667–0.738) 

0.983 
(0.973–0.993) 

0.998 
(0.994–1.000) 

0.971 
(0.958–0.984) 

0.994 
(0.988–1.000) 

0.988 
(0.979–0.996) 

0.849 
(0.821–0.876) 

0.975 
(0.963–0.987) 

0.823 
(0.794–0.853) 

Atrial 
fibrillation 

100 547 0.930 
(0.910–0.950) 

0.880 
(0.855–0.905) 

0.996 
(0.992–1.000) 

0.984 
(0.974–0.993) 

0.979 
(0.968–0.990) 

0.907 
(0.885–0.930) 

0.987 
(0.979–0.996) 

0.978 
(0.967–0.989) 

0.954 
(0.938–0.970) 

0.893 
(0.870–0.917) 

Atrial flutter 54 593 0.963 
(0.948–0.978) 

0.833 
(0.805–0.862) 

0.993 
(0.987–1.000) 

0.993 
(0.987–1.000) 

0.929 
(0.909–0.948) 

0.918 
(0.897–0.939) 

0.997 
(0.992–1.000) 

0.985 
(0.976–0.994) 

0.945 
(0.928–0.963) 

0.874 
(0.848–0.899) 

Other rhythm 104 543 0.875 
(0.850–0.900) 

0.788 
(0.757–0.820) 

0.991 
(0.983–0.998) 

0.924 
(0.904–0.945) 

0.948 
(0.931–0.965) 

0.667 
(0.630–0.703) 

0.976 
(0.965–0.988) 

0.958 
(0.943–0.973) 

0.910 
(0.888–0.932) 

0.722 
(0.688–0.757) 

ACS   0.964 
(0.946–0.983) 

0.905 
(0.875–0.934) 

0.980 
(0.966–0.994) 

0.983 
(0.971–0.996) 

0.931 
(0.906–0.956) 

0.938 
(0.914–0.962) 

0.990 
(0.980–1.000) 

0.974 
(0.958–0.99) 

0.947 
(0.925–0.970) 

0.921 
(0.894–0.948) 

Suspected ST- 
elevation ACS 
(STEMI) 

31 161 1.000 
(1.000–1.000) 

0.839 
(0.787–0.891) 

0.988 
(0.972–1.000) 

1.000 
(1.000–1.000) 

0.939 
(0.906–0.973) 

1.000 
(1.000–1.000) 

1.000 
(1.000–1.000) 

0.970 
(0.946–0.994) 

0.969 
(0.944–0.993) 

0.912 
(0.872–0.952) 

Suspected Non- 
ST-elevation 
ACS (NSTEMI) 

53 139 0.943 
(0.911–0.976) 

0.943 
(0.911–0.976) 

0.971 
(0.948–0.995) 

0.964 
(0.938–0.990) 

0.926 
(0.889–0.963) 

0.909 
(0.868–0.950) 

0.978 
(0.958–0.999) 

0.978 
(0.957–0.999) 

0.935 
(0.900–0.970) 

0.926 
(0.889–0.963) 

Conduction 
abnormalities   

0.870 
(0.852–0.887) 

0.623 
(0.598–0.648) 

0.959 
(0.949–0.969) 

0.990 
(0.985–0.995) 

0.923 
(0.909–0.937) 

0.973 
(0.965–0.981) 

0.929 
(0.916–0.942) 

0.823 
(0.804–0.843) 

0.895 
(0.880–0.911) 

0.759 
(0.737–0.781) 

Left bundle 
branch block 

126 139 0.929 
(0.898–0.960) 

0.897 
(0.860–0.933) 

0.986 
(0.971–1.000) 

0.993 
(0.983–1.000) 

0.983 
(0.968–0.999) 

0.991 
(0.980–1.000) 

0.938 
(0.909–0.967) 

0.914 
(0.880–0.948) 

0.955 
(0.930–0.980) 

0.942 
(0.913–0.970) 

Right bundle 
branch block 

90 175 0.989 
(0.976–1.000) 

0.844 
(0.801–0.888) 

0.954 
(0.929–0.979) 

0.989 
(0.976–1.000) 

0.918 
(0.884–0.951) 

0.974 
(0.955–0.993) 

0.994 
(0.985–1.000) 

0.925 
(0.893–0.957) 

0.952 
(0.926–0.978) 

0.905 
(0.869–0.940) 

Left anterior 
fascicular block 

79 132 0.886 
(0.843–0.929) 

0.582 
(0.516–0.649) 

0.962 
(0.936–0.988) 

0.992 
(0.981–1.000) 

0.933 
(0.900–0.967) 

0.979 
(0.959–0.998) 

0.934 
(0.900–0.967) 

0.799 
(0.745–0.853) 

0.909 
(0.870–0.948) 

0.730 
(0.670–0.790) 

Left posterior 
fascicular block 

74 137 0.865 
(0.819–0.911) 

0.338 
(0.274–0.402) 

0.971 
(0.948–0.994) 

0.985 
(0.969–1.000) 

0.941 
(0.909–0.973) 

0.926 
(0.891–0.961) 

0.930 
(0.896–0.964) 

0.734 
(0.674–0.793) 

0.901 
(0.861–0.942) 

0.495 
(0.428–0.563) 

2nd degree AV 
block Mobitz 
type I 
(Wenckebach) 

53 196 0.717 
(0.661–0.773) 

0.547 
(0.485–0.609) 

0.959 
(0.935–0.984) 

0.990 
(0.977–1.000) 

0.826 
(0.779–0.873) 

0.935 
(0.905–0.966) 

0.926 
(0.894–0.959) 

0.890 
(0.851–0.929) 

0.768 
(0.715–0.820) 

0.690 
(0.633–0.748) 

Higher degree 
AV block 

100 149 0.760 
(0.707–0.813) 

0.360 
(0.300–0.420) 

0.926 
(0.894–0.959) 

0.993 
(0.983–1.000) 

0.874 
(0.832–0.915) 

0.973 
(0.953–0.993) 

0.852 
(0.808–0.896) 

0.698 
(0.641–0.755) 

0.813 
(0.764–0.861) 

0.526 
(0.464–0.588) 

Ectopy 97 62 0.897 
(0.850–0.944) 

0.825 
(0.766–0.884) 

1.000 
(1.000–1.000) 

0.984 
(0.964–1.000) 

1.000 
(1.000–1.000) 

0.988 
(0.970–1.000) 

0.861 
(0.807–0.915) 

0.782 
(0.718–0.846) 

0.946 
(0.910–0.981) 

0.899 
(0.852–0.946) 

Chamber 
enlargement   

1.000 
(1.000–1.000) 

0.868 
(0.823–0.912) 

0.902 
(0.863–0.941) 

0.935 
(0.902–0.967) 

0.819 
(0.769–0.870) 

0.855 
(0.809–0.901) 

1.000 
(1.000–1.000) 

0.941 
(0.910–0.972) 

0.901 
(0.861–0.940) 

0.861 
(0.816–0.907) 

Suspected 
atrial 
enlargement 

39 62 1.000 
(1.000–1.000) 

0.949 
(0.906–0.992) 

0.919 
(0.866–0.972) 

0.952 
(0.910–0.993) 

0.886 
(0.824–0.948) 

0.925 
(0.874–0.976) 

1.000 
(1.000–1.000) 

0.967 
(0.932–1.000) 

0.940 
(0.893–0.986) 

0.937 
(0.889–0.984) 

Suspected 
ventricular 
hypertrophy 

29 91 1.000 
(1.000–1.000) 

0.759 
(0.682–0.835) 

0.890 
(0.834–0.946) 

0.923 
(0.875–0.971) 

0.744 
(0.665–0.822) 

0.759 
(0.682–0.835) 

1.000 
(1.000–1.000) 

0.923 
(0.875–0.971) 

0.853 
(0.790–0.916) 

0.759 
(0.682–0.835) 

Axis   0.886 
(0.859–0.913) 

0.879 
(0.851–0.907) 

0.962 
(0.946–0.978) 

0.960 
(0.943–0.976) 

0.886 
(0.859–0.913) 

0.879 
(0.851–0.907) 

0.962 
(0.946–0.978) 

0.960 
(0.943–0.976) 

0.886 
(0.859–0.913) 

0.879 
(0.851–0.907) 

Normal axis 34 98 1.000 
(1.000–1.000) 

0.971 
(0.942–0.999) 

0.878 
(0.822–0.933) 

0.908 
(0.859–0.957) 

0.739 
(0.664–0.814) 

0.786 
(0.716–0.856) 

1.000 
(1.000–1.000) 

0.989 
(0.971–1.000) 

0.850 
(0.789–0.911) 

0.868 
(0.811–0.926) 

Left axis 
deviation 

35 97 0.657 
(0.576–0.738) 

0.714 
(0.637–0.791) 

0.990 
(0.972–1.000) 

0.959 
(0.925–0.993) 

0.958 
(0.924–0.992) 

0.862 
(0.803–0.921) 

0.889 
(0.835–0.943) 

0.903 
(0.852–0.953) 

0.780 
(0.709–0.850) 

0.781 
(0.711–0.852) 

Right axis 
deviation 

31 101 0.968 
(0.938–0.998) 

1.000 
(1.000–1.000) 

0.990 
(0.973–1.000) 

0.980 
(0.956–1.000) 

0.968 
(0.938–0.998) 

0.939 
(0.899–0.980) 

0.990 
(0.973–1.000) 

1.000 
(1.000–1.000) 

0.968 
(0.938–0.998) 

0.969 
(0.939–0.998) 

Extreme axis 
deviation 

32 100 0.938 
(0.896–0.979) 

0.844 
(0.782–0.906) 

0.990 
(0.973–1.000) 

0.990 
(0.973–1.000) 

0.968 
(0.938–0.998) 

0.964 
(0.933–0.996) 

0.980 
(0.956–1.000) 

0.952 
(0.915–0.988) 

0.952 
(0.916–0.989) 

0.900 
(0.849–0.951) 

AV, atrioventricular; DNN, deep neural network; GE, General Electric Marquette 12SL algorithm; NSTEMI, Non-ST-elevation myocardial infarction; STEMI, ST-elevation myocardial infarction. 
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